{"title":"复杂网络中的无序动力学","authors":"Antonio Palacios, Visarath In, Mani Amani","doi":"10.1142/s0218127424300106","DOIUrl":null,"url":null,"abstract":"<p>Disorder in parameters appears to influence the collective behavior of complex adaptive networks in ways that might seem unconventional. For instance, heterogeneities may, unexpectedly, lead to enhanced regions of existence of stable synchronization states. This behavior is unexpected because synchronization appears, generically, in symmetric networks with homogeneous components. Related works have, however, misidentified cases where disorder seems to play a critical role in enhancing synchronization, where it is actually not the case. Thus, in order to clarify the role of disorder in adaptive networks, we use normal forms to study, mathematically, when and how the presence of disorder can facilitate the emergence of collective patterns. We employ parameter symmetry breaking to study the interplay between disorder and the underlying bifurcations that determine the conditions for the existence and stability of collective behavior. This work provides a rigorous justification for a certain barycentric condition to be imposed on the heterogeneity of the parameters while studying the synchronization state. Theoretical results are accompanied by numerical simulations, which help clarify incorrect claims of disorder purportedly enhancing synchronization states.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"230 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disorder-Induced Dynamics in Complex Networks\",\"authors\":\"Antonio Palacios, Visarath In, Mani Amani\",\"doi\":\"10.1142/s0218127424300106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Disorder in parameters appears to influence the collective behavior of complex adaptive networks in ways that might seem unconventional. For instance, heterogeneities may, unexpectedly, lead to enhanced regions of existence of stable synchronization states. This behavior is unexpected because synchronization appears, generically, in symmetric networks with homogeneous components. Related works have, however, misidentified cases where disorder seems to play a critical role in enhancing synchronization, where it is actually not the case. Thus, in order to clarify the role of disorder in adaptive networks, we use normal forms to study, mathematically, when and how the presence of disorder can facilitate the emergence of collective patterns. We employ parameter symmetry breaking to study the interplay between disorder and the underlying bifurcations that determine the conditions for the existence and stability of collective behavior. This work provides a rigorous justification for a certain barycentric condition to be imposed on the heterogeneity of the parameters while studying the synchronization state. Theoretical results are accompanied by numerical simulations, which help clarify incorrect claims of disorder purportedly enhancing synchronization states.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"230 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424300106\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424300106","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Disorder in parameters appears to influence the collective behavior of complex adaptive networks in ways that might seem unconventional. For instance, heterogeneities may, unexpectedly, lead to enhanced regions of existence of stable synchronization states. This behavior is unexpected because synchronization appears, generically, in symmetric networks with homogeneous components. Related works have, however, misidentified cases where disorder seems to play a critical role in enhancing synchronization, where it is actually not the case. Thus, in order to clarify the role of disorder in adaptive networks, we use normal forms to study, mathematically, when and how the presence of disorder can facilitate the emergence of collective patterns. We employ parameter symmetry breaking to study the interplay between disorder and the underlying bifurcations that determine the conditions for the existence and stability of collective behavior. This work provides a rigorous justification for a certain barycentric condition to be imposed on the heterogeneity of the parameters while studying the synchronization state. Theoretical results are accompanied by numerical simulations, which help clarify incorrect claims of disorder purportedly enhancing synchronization states.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.