Inger B. Hagen, Karen S. Knutsen, Tor Arne Johansen, Edmund Brekke
{"title":"从 AIS 历史数据中探索 COLREG 相关参数","authors":"Inger B. Hagen, Karen S. Knutsen, Tor Arne Johansen, Edmund Brekke","doi":"10.1017/s0373463324000109","DOIUrl":null,"url":null,"abstract":"<p>Reliable anti-collision control algorithms conforming with the rules regulating traffic at sea, the International Regulations for Preventing Collisions at Sea (COLREG), are essential for the deployment of autonomous vessels in waters shared with other ships. The development of such methods is an active field of research. However, little attention has been given to how these rules are interpreted by experienced mariners, and how such information can be parametrised for use in automatic control systems and autonomous ships. This paper presents a method for exploiting historical automatic identification system (AIS) data to characterise parameters indicating the prevalent practices at sea in encounters with high collision risk. The method has been tested on data gathered in areas off the Norwegian coast over several years. Statistics on relevant parameters from the resulting dataset and the relation between them is presented. The results indicate that the strongest influence on vessel behaviour is the type of situation, and the amount of land and grounding hazards in the vessel's proximity.</p>","PeriodicalId":501254,"journal":{"name":"The Journal of Navigation","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of COLREG-relevant parameters from historical AIS-data\",\"authors\":\"Inger B. Hagen, Karen S. Knutsen, Tor Arne Johansen, Edmund Brekke\",\"doi\":\"10.1017/s0373463324000109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reliable anti-collision control algorithms conforming with the rules regulating traffic at sea, the International Regulations for Preventing Collisions at Sea (COLREG), are essential for the deployment of autonomous vessels in waters shared with other ships. The development of such methods is an active field of research. However, little attention has been given to how these rules are interpreted by experienced mariners, and how such information can be parametrised for use in automatic control systems and autonomous ships. This paper presents a method for exploiting historical automatic identification system (AIS) data to characterise parameters indicating the prevalent practices at sea in encounters with high collision risk. The method has been tested on data gathered in areas off the Norwegian coast over several years. Statistics on relevant parameters from the resulting dataset and the relation between them is presented. The results indicate that the strongest influence on vessel behaviour is the type of situation, and the amount of land and grounding hazards in the vessel's proximity.</p>\",\"PeriodicalId\":501254,\"journal\":{\"name\":\"The Journal of Navigation\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0373463324000109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0373463324000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploration of COLREG-relevant parameters from historical AIS-data
Reliable anti-collision control algorithms conforming with the rules regulating traffic at sea, the International Regulations for Preventing Collisions at Sea (COLREG), are essential for the deployment of autonomous vessels in waters shared with other ships. The development of such methods is an active field of research. However, little attention has been given to how these rules are interpreted by experienced mariners, and how such information can be parametrised for use in automatic control systems and autonomous ships. This paper presents a method for exploiting historical automatic identification system (AIS) data to characterise parameters indicating the prevalent practices at sea in encounters with high collision risk. The method has been tested on data gathered in areas off the Norwegian coast over several years. Statistics on relevant parameters from the resulting dataset and the relation between them is presented. The results indicate that the strongest influence on vessel behaviour is the type of situation, and the amount of land and grounding hazards in the vessel's proximity.