{"title":"旋转磁场下铁流体液滴中的液滴","authors":"Xinping Zhou, Wencai Xiao, Qi Zhang, Wanqiu Zhang, Fei Zhang","doi":"10.1007/s10665-024-10343-5","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A droplet in a ferrofluid droplet under a rotating magnetic field\",\"authors\":\"Xinping Zhou, Wencai Xiao, Qi Zhang, Wanqiu Zhang, Fei Zhang\",\"doi\":\"10.1007/s10665-024-10343-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10343-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10343-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A droplet in a ferrofluid droplet under a rotating magnetic field
Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.