{"title":"液滴撞击多孔基质:瓦格纳早期扩散理论","authors":"Gavin Moreton, Richard Purvis, Mark J. Cooker","doi":"10.1007/s10665-024-10352-4","DOIUrl":null,"url":null,"abstract":"<p>An analytical model for droplet impact onto a porous substrate is presented, based on Wagner theory. An idealised substrate boundary condition is introduced, mimicking the effect of fluid entry into a genuinely porous substrate. The asymptotic analysis yields a solution for a small porous correction with free-surfaces and pressures compared with the impermeable case. On a global scale, it is found that the impact region on the substrate grows more slowly with porosity included due to loss of mass into the substrate. The spatial distribution of liquid volume flux into the substrate is also described. Locally near the turn-over regions, the expected jetting along the surface is calculated with the same volume flux but the jet is found to be slower and thicker than for an impermeable substrate.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Droplet impact onto a porous substrate: a Wagner theory for early-stage spreading\",\"authors\":\"Gavin Moreton, Richard Purvis, Mark J. Cooker\",\"doi\":\"10.1007/s10665-024-10352-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An analytical model for droplet impact onto a porous substrate is presented, based on Wagner theory. An idealised substrate boundary condition is introduced, mimicking the effect of fluid entry into a genuinely porous substrate. The asymptotic analysis yields a solution for a small porous correction with free-surfaces and pressures compared with the impermeable case. On a global scale, it is found that the impact region on the substrate grows more slowly with porosity included due to loss of mass into the substrate. The spatial distribution of liquid volume flux into the substrate is also described. Locally near the turn-over regions, the expected jetting along the surface is calculated with the same volume flux but the jet is found to be slower and thicker than for an impermeable substrate.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10352-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10352-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Droplet impact onto a porous substrate: a Wagner theory for early-stage spreading
An analytical model for droplet impact onto a porous substrate is presented, based on Wagner theory. An idealised substrate boundary condition is introduced, mimicking the effect of fluid entry into a genuinely porous substrate. The asymptotic analysis yields a solution for a small porous correction with free-surfaces and pressures compared with the impermeable case. On a global scale, it is found that the impact region on the substrate grows more slowly with porosity included due to loss of mass into the substrate. The spatial distribution of liquid volume flux into the substrate is also described. Locally near the turn-over regions, the expected jetting along the surface is calculated with the same volume flux but the jet is found to be slower and thicker than for an impermeable substrate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.