{"title":"德利尼类和有限一般线性群的表示,第 1 部分:普遍属性","authors":"Inna Entova-Aizenbud, Thorsten Heidersdorf","doi":"10.1007/s00031-023-09840-1","DOIUrl":null,"url":null,"abstract":"<p>We study the Deligne interpolation categories <span>\\(\\underline{\\textrm{Rep}}(GL_{t}({\\mathbb F}_q))\\)</span> for <span>\\(t\\in \\mathbb {C}\\)</span>, first introduced by F. Knop. These categories interpolate the categories of finite-dimensional complex representations of the finite general linear group <span>\\(GL_n(\\mathbb {F}_q)\\)</span>. We describe the morphism spaces in this category via generators and relations. We show that the generating object of this category (an analogue of the representation <span>\\({\\mathbb C}{\\mathbb F}_q^n\\)</span> of <span>\\(GL_n(\\mathbb {F}_q)\\)</span>) carries the structure of a Frobenius algebra with a compatible <span>\\({\\mathbb F}_q\\)</span>-linear structure; we call such objects <span>\\(\\mathbb {F}_q\\)</span>-linear Frobenius spaces and show that <span>\\(\\underline{\\textrm{Rep}}(GL_{t}({\\mathbb F}_q))\\)</span> is the universal symmetric monoidal category generated by such an <span>\\(\\mathbb {F}_q\\)</span>-linear Frobenius space of categorical dimension <i>t</i>. In the second part of the paper, we prove a similar universal property for a category of representations of <span>\\(GL_{\\infty }(\\mathbb {F}_q)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deligne Categories and Representations of the Finite General Linear Group, Part 1: Universal Property\",\"authors\":\"Inna Entova-Aizenbud, Thorsten Heidersdorf\",\"doi\":\"10.1007/s00031-023-09840-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the Deligne interpolation categories <span>\\\\(\\\\underline{\\\\textrm{Rep}}(GL_{t}({\\\\mathbb F}_q))\\\\)</span> for <span>\\\\(t\\\\in \\\\mathbb {C}\\\\)</span>, first introduced by F. Knop. These categories interpolate the categories of finite-dimensional complex representations of the finite general linear group <span>\\\\(GL_n(\\\\mathbb {F}_q)\\\\)</span>. We describe the morphism spaces in this category via generators and relations. We show that the generating object of this category (an analogue of the representation <span>\\\\({\\\\mathbb C}{\\\\mathbb F}_q^n\\\\)</span> of <span>\\\\(GL_n(\\\\mathbb {F}_q)\\\\)</span>) carries the structure of a Frobenius algebra with a compatible <span>\\\\({\\\\mathbb F}_q\\\\)</span>-linear structure; we call such objects <span>\\\\(\\\\mathbb {F}_q\\\\)</span>-linear Frobenius spaces and show that <span>\\\\(\\\\underline{\\\\textrm{Rep}}(GL_{t}({\\\\mathbb F}_q))\\\\)</span> is the universal symmetric monoidal category generated by such an <span>\\\\(\\\\mathbb {F}_q\\\\)</span>-linear Frobenius space of categorical dimension <i>t</i>. In the second part of the paper, we prove a similar universal property for a category of representations of <span>\\\\(GL_{\\\\infty }(\\\\mathbb {F}_q)\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-023-09840-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09840-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deligne Categories and Representations of the Finite General Linear Group, Part 1: Universal Property
We study the Deligne interpolation categories \(\underline{\textrm{Rep}}(GL_{t}({\mathbb F}_q))\) for \(t\in \mathbb {C}\), first introduced by F. Knop. These categories interpolate the categories of finite-dimensional complex representations of the finite general linear group \(GL_n(\mathbb {F}_q)\). We describe the morphism spaces in this category via generators and relations. We show that the generating object of this category (an analogue of the representation \({\mathbb C}{\mathbb F}_q^n\) of \(GL_n(\mathbb {F}_q)\)) carries the structure of a Frobenius algebra with a compatible \({\mathbb F}_q\)-linear structure; we call such objects \(\mathbb {F}_q\)-linear Frobenius spaces and show that \(\underline{\textrm{Rep}}(GL_{t}({\mathbb F}_q))\) is the universal symmetric monoidal category generated by such an \(\mathbb {F}_q\)-linear Frobenius space of categorical dimension t. In the second part of the paper, we prove a similar universal property for a category of representations of \(GL_{\infty }(\mathbb {F}_q)\).