德利尼类和有限一般线性群的表示,第 1 部分:普遍属性

Pub Date : 2024-04-17 DOI:10.1007/s00031-023-09840-1
Inna Entova-Aizenbud, Thorsten Heidersdorf
{"title":"德利尼类和有限一般线性群的表示,第 1 部分:普遍属性","authors":"Inna Entova-Aizenbud, Thorsten Heidersdorf","doi":"10.1007/s00031-023-09840-1","DOIUrl":null,"url":null,"abstract":"<p>We study the Deligne interpolation categories <span>\\(\\underline{\\textrm{Rep}}(GL_{t}({\\mathbb F}_q))\\)</span> for <span>\\(t\\in \\mathbb {C}\\)</span>, first introduced by F. Knop. These categories interpolate the categories of finite-dimensional complex representations of the finite general linear group <span>\\(GL_n(\\mathbb {F}_q)\\)</span>. We describe the morphism spaces in this category via generators and relations. We show that the generating object of this category (an analogue of the representation <span>\\({\\mathbb C}{\\mathbb F}_q^n\\)</span> of <span>\\(GL_n(\\mathbb {F}_q)\\)</span>) carries the structure of a Frobenius algebra with a compatible <span>\\({\\mathbb F}_q\\)</span>-linear structure; we call such objects <span>\\(\\mathbb {F}_q\\)</span>-linear Frobenius spaces and show that <span>\\(\\underline{\\textrm{Rep}}(GL_{t}({\\mathbb F}_q))\\)</span> is the universal symmetric monoidal category generated by such an <span>\\(\\mathbb {F}_q\\)</span>-linear Frobenius space of categorical dimension <i>t</i>. In the second part of the paper, we prove a similar universal property for a category of representations of <span>\\(GL_{\\infty }(\\mathbb {F}_q)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deligne Categories and Representations of the Finite General Linear Group, Part 1: Universal Property\",\"authors\":\"Inna Entova-Aizenbud, Thorsten Heidersdorf\",\"doi\":\"10.1007/s00031-023-09840-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the Deligne interpolation categories <span>\\\\(\\\\underline{\\\\textrm{Rep}}(GL_{t}({\\\\mathbb F}_q))\\\\)</span> for <span>\\\\(t\\\\in \\\\mathbb {C}\\\\)</span>, first introduced by F. Knop. These categories interpolate the categories of finite-dimensional complex representations of the finite general linear group <span>\\\\(GL_n(\\\\mathbb {F}_q)\\\\)</span>. We describe the morphism spaces in this category via generators and relations. We show that the generating object of this category (an analogue of the representation <span>\\\\({\\\\mathbb C}{\\\\mathbb F}_q^n\\\\)</span> of <span>\\\\(GL_n(\\\\mathbb {F}_q)\\\\)</span>) carries the structure of a Frobenius algebra with a compatible <span>\\\\({\\\\mathbb F}_q\\\\)</span>-linear structure; we call such objects <span>\\\\(\\\\mathbb {F}_q\\\\)</span>-linear Frobenius spaces and show that <span>\\\\(\\\\underline{\\\\textrm{Rep}}(GL_{t}({\\\\mathbb F}_q))\\\\)</span> is the universal symmetric monoidal category generated by such an <span>\\\\(\\\\mathbb {F}_q\\\\)</span>-linear Frobenius space of categorical dimension <i>t</i>. In the second part of the paper, we prove a similar universal property for a category of representations of <span>\\\\(GL_{\\\\infty }(\\\\mathbb {F}_q)\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-023-09840-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09840-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究由弗-克诺普(F. Knop)首次引入的、针对 \(t\in \mathbb {C}\)的德莱尼插值范畴(underline{textrm{Rep}}(GL_{t}({\mathbb {F}_q))\ )。这些范畴是有限一般线性群 \(GL_n(\mathbb {F}_q)\)的有限维复数表示范畴的插值。我们通过生成物和关系来描述这个范畴中的形态空间。我们证明了这个范畴的生成对象(\(GL_n(\mathbb {F}_q) \的表示\({\mathbb C}\{mathbb F}_q^n\) 的类似物)携带着具有兼容的\({\mathbb F}_q\) -线性结构的弗罗贝尼斯代数的结构;我们称这样的对象为 \(\mathbb {F}_q\)-linear Frobenius 空间,并证明 \(underline{textrm{Rep}}(GL_{t}({\mathbb F}_q))\) 是由这样一个分类维数为 t 的 \(\mathbb {F}_q\)-linear Frobenius 空间生成的普遍对称单元范畴。在本文的第二部分,我们证明了 \(GL_{\infty }(\mathbb {F}_q)\)表征类别的类似普遍性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deligne Categories and Representations of the Finite General Linear Group, Part 1: Universal Property

分享
查看原文
Deligne Categories and Representations of the Finite General Linear Group, Part 1: Universal Property

We study the Deligne interpolation categories \(\underline{\textrm{Rep}}(GL_{t}({\mathbb F}_q))\) for \(t\in \mathbb {C}\), first introduced by F. Knop. These categories interpolate the categories of finite-dimensional complex representations of the finite general linear group \(GL_n(\mathbb {F}_q)\). We describe the morphism spaces in this category via generators and relations. We show that the generating object of this category (an analogue of the representation \({\mathbb C}{\mathbb F}_q^n\) of \(GL_n(\mathbb {F}_q)\)) carries the structure of a Frobenius algebra with a compatible \({\mathbb F}_q\)-linear structure; we call such objects \(\mathbb {F}_q\)-linear Frobenius spaces and show that \(\underline{\textrm{Rep}}(GL_{t}({\mathbb F}_q))\) is the universal symmetric monoidal category generated by such an \(\mathbb {F}_q\)-linear Frobenius space of categorical dimension t. In the second part of the paper, we prove a similar universal property for a category of representations of \(GL_{\infty }(\mathbb {F}_q)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信