弯曲矩形环内 NEPCM 的热固性对流:ISPH 混合法和机器学习

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Abdelraheem M. Aly, Sang-Wook Lee, Nghia Nguyen Ho, Zehba Raizah
{"title":"弯曲矩形环内 NEPCM 的热固性对流:ISPH 混合法和机器学习","authors":"Abdelraheem M. Aly, Sang-Wook Lee, Nghia Nguyen Ho, Zehba Raizah","doi":"10.1007/s40571-024-00744-9","DOIUrl":null,"url":null,"abstract":"<p>In this work, the incompressible smoothed particle hydrodynamics (ISPH) method is utilized to simulate thermosolutal convection in a novel annulus barred by NEPCMs. The novel annulus is formed between a horizontal curved rectangle connected to a vertical rectangle containing a vertical ellipse. It is the first attempt to investigate the heat and mass transmission of NEPCM in such a unique annulus. NEPCM’s sophisticated designs of closed domains during heat/mass transfer can be applied in energy savings, electrical device cooling, and solar cell cooling. The ISPH method solved the fractional time derivative of governing partial differential equations. The artificial neural network (ANN) is integrated with the ISPH results to predict the average Nusselt <span>\\(\\overline{{\\text{Nu}} }\\)</span> and Sherwood numbers <span>\\(\\overline{{\\text{Sh}} }\\)</span>. The scales of physical parameters are Hartmann number (Ha = 0–80), buoyancy ratio parameter (<i>N </i>= − 10–20), Dufour/Soret numbers (Du = 0–0.4 &amp; Sr = 0–0.8), Rayleigh number (Ra=10<sup>3</sup>–10<sup>5</sup>), fractional time derivative (<i>α</i> = 0.85–1), nanoparticle parameter (<i>φ </i>= 0–0.15), and fusion temperature (<i>θ</i><sub>f</sub> = 0.05–0.95). The main findings showed the importance of buoyancy ratio and Rayleigh number in enhancing the buoyancy-driven convection which accelerates the velocity field and strengths the isotherms and isoconcentration. The velocity field decreases according to an enhancement in Hartmann number and nanoparticle parameter. The exact agreement of the ANN model prediction values with the goal values demonstrates that the created ANN model can predict the <span>\\(\\overline{{\\text{Nu}} }\\)</span> and <span>\\(\\overline{{\\text{Sh}} }\\)</span> values properly. The complicity of a closed domain by carving the horizontal rectangle and inserting the ellipse inside a vertical rectangle can be utilized into cooling equipment, solar cells, and heat exchangers.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermosolutal convection of NEPCM inside a curved rectangular annulus: hybrid ISPH method and machine learning\",\"authors\":\"Abdelraheem M. Aly, Sang-Wook Lee, Nghia Nguyen Ho, Zehba Raizah\",\"doi\":\"10.1007/s40571-024-00744-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the incompressible smoothed particle hydrodynamics (ISPH) method is utilized to simulate thermosolutal convection in a novel annulus barred by NEPCMs. The novel annulus is formed between a horizontal curved rectangle connected to a vertical rectangle containing a vertical ellipse. It is the first attempt to investigate the heat and mass transmission of NEPCM in such a unique annulus. NEPCM’s sophisticated designs of closed domains during heat/mass transfer can be applied in energy savings, electrical device cooling, and solar cell cooling. The ISPH method solved the fractional time derivative of governing partial differential equations. The artificial neural network (ANN) is integrated with the ISPH results to predict the average Nusselt <span>\\\\(\\\\overline{{\\\\text{Nu}} }\\\\)</span> and Sherwood numbers <span>\\\\(\\\\overline{{\\\\text{Sh}} }\\\\)</span>. The scales of physical parameters are Hartmann number (Ha = 0–80), buoyancy ratio parameter (<i>N </i>= − 10–20), Dufour/Soret numbers (Du = 0–0.4 &amp; Sr = 0–0.8), Rayleigh number (Ra=10<sup>3</sup>–10<sup>5</sup>), fractional time derivative (<i>α</i> = 0.85–1), nanoparticle parameter (<i>φ </i>= 0–0.15), and fusion temperature (<i>θ</i><sub>f</sub> = 0.05–0.95). The main findings showed the importance of buoyancy ratio and Rayleigh number in enhancing the buoyancy-driven convection which accelerates the velocity field and strengths the isotherms and isoconcentration. The velocity field decreases according to an enhancement in Hartmann number and nanoparticle parameter. The exact agreement of the ANN model prediction values with the goal values demonstrates that the created ANN model can predict the <span>\\\\(\\\\overline{{\\\\text{Nu}} }\\\\)</span> and <span>\\\\(\\\\overline{{\\\\text{Sh}} }\\\\)</span> values properly. The complicity of a closed domain by carving the horizontal rectangle and inserting the ellipse inside a vertical rectangle can be utilized into cooling equipment, solar cells, and heat exchangers.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00744-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00744-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,利用不可压缩平滑粒子流体力学 (ISPH) 方法模拟了由 NEPCM 遮挡的新型环形空间中的热固性对流。这种新型环形结构是在一个水平弯曲矩形与一个包含垂直椭圆的垂直矩形之间形成的。这是首次尝试研究 NEPCM 在这种独特环形结构中的热量和质量传输。NEPCM 在传热/传质过程中对封闭域的精密设计可用于节能、电气设备冷却和太阳能电池冷却。ISPH 方法求解了支配偏微分方程的分数时间导数。人工神经网络(ANN)与 ISPH 结果相结合,预测了平均努塞尔特数(Nusselt)和舍伍德数(Sherwood)。物理参数的尺度为哈特曼数(Ha = 0-80)、浮力比参数(N = - 10-20)、杜弗/索雷特数(Du = 0-0.4 & Sr = 0-0.8)、瑞利数(Ra=103-105)、分数时间导数(α = 0.85-1)、纳米粒子参数(φ = 0-0.15)和聚变温度(θf = 0.05-0.95)。主要研究结果表明,浮力比和瑞利数在增强浮力驱动对流方面具有重要作用,浮力驱动对流加速了速度场,增强了等温线和等浓度。速度场随着哈特曼数和纳米粒子参数的增加而减小。ANN 模型的预测值与目标值完全一致,这表明所创建的 ANN 模型可以正确预测 \(\overline{{text{Nu}} }\) 和 \(\overline{{text{Sh}} }\) 值。通过雕刻水平矩形和在垂直矩形内插入椭圆来实现闭合域的复杂性,可用于冷却设备、太阳能电池和热交换器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermosolutal convection of NEPCM inside a curved rectangular annulus: hybrid ISPH method and machine learning

Thermosolutal convection of NEPCM inside a curved rectangular annulus: hybrid ISPH method and machine learning

In this work, the incompressible smoothed particle hydrodynamics (ISPH) method is utilized to simulate thermosolutal convection in a novel annulus barred by NEPCMs. The novel annulus is formed between a horizontal curved rectangle connected to a vertical rectangle containing a vertical ellipse. It is the first attempt to investigate the heat and mass transmission of NEPCM in such a unique annulus. NEPCM’s sophisticated designs of closed domains during heat/mass transfer can be applied in energy savings, electrical device cooling, and solar cell cooling. The ISPH method solved the fractional time derivative of governing partial differential equations. The artificial neural network (ANN) is integrated with the ISPH results to predict the average Nusselt \(\overline{{\text{Nu}} }\) and Sherwood numbers \(\overline{{\text{Sh}} }\). The scales of physical parameters are Hartmann number (Ha = 0–80), buoyancy ratio parameter (N = − 10–20), Dufour/Soret numbers (Du = 0–0.4 & Sr = 0–0.8), Rayleigh number (Ra=103–105), fractional time derivative (α = 0.85–1), nanoparticle parameter (φ = 0–0.15), and fusion temperature (θf = 0.05–0.95). The main findings showed the importance of buoyancy ratio and Rayleigh number in enhancing the buoyancy-driven convection which accelerates the velocity field and strengths the isotherms and isoconcentration. The velocity field decreases according to an enhancement in Hartmann number and nanoparticle parameter. The exact agreement of the ANN model prediction values with the goal values demonstrates that the created ANN model can predict the \(\overline{{\text{Nu}} }\) and \(\overline{{\text{Sh}} }\) values properly. The complicity of a closed domain by carving the horizontal rectangle and inserting the ellipse inside a vertical rectangle can be utilized into cooling equipment, solar cells, and heat exchangers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信