数形的半严格弦性

Pub Date : 2024-04-17 DOI:10.1007/s00373-024-02778-5
Jing Huang, Ying Ying Ye
{"title":"数形的半严格弦性","authors":"Jing Huang, Ying Ying Ye","doi":"10.1007/s00373-024-02778-5","DOIUrl":null,"url":null,"abstract":"<p>Chordal graphs are important in structural graph theory. Chordal digraphs are a digraph analogue of chordal graphs and have been a subject of active studies recently. Unlike chordal graphs, chordal digraphs lack many structural properties such as forbidden subdigraph or representation characterizations. In this paper we introduce the notion of semi-strict chordal digraphs which form a class strictly between chordal digraphs and chordal graphs. Semi-strict chordal digraphs have rich structural properties. We characterize semi-strict chordal digraphs in terms of knotting graphs, a notion analogous to the one introduced by Gallai for the study of comparability graphs. We also give forbidden subdigraph characterizations of semi-strict chordal digraphs within the classes of locally semicomplete digraphs and weakly quasi-transitive digraphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-strict Chordality of Digraphs\",\"authors\":\"Jing Huang, Ying Ying Ye\",\"doi\":\"10.1007/s00373-024-02778-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chordal graphs are important in structural graph theory. Chordal digraphs are a digraph analogue of chordal graphs and have been a subject of active studies recently. Unlike chordal graphs, chordal digraphs lack many structural properties such as forbidden subdigraph or representation characterizations. In this paper we introduce the notion of semi-strict chordal digraphs which form a class strictly between chordal digraphs and chordal graphs. Semi-strict chordal digraphs have rich structural properties. We characterize semi-strict chordal digraphs in terms of knotting graphs, a notion analogous to the one introduced by Gallai for the study of comparability graphs. We also give forbidden subdigraph characterizations of semi-strict chordal digraphs within the classes of locally semicomplete digraphs and weakly quasi-transitive digraphs.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02778-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02778-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弦图在结构图理论中非常重要。和弦数图是和弦图的数图类似物,是近来活跃的研究课题。与和弦图不同,和弦数图缺乏许多结构特性,如禁止子图或表示特性。在本文中,我们引入了半严格和弦数图的概念,它是严格介于和弦数图和和弦图之间的一类图。半严格和弦数图具有丰富的结构特性。我们用打结图来描述半严格和弦数图的特征,这一概念类似于加莱在研究可比性图时引入的概念。我们还给出了半严格和弦图在局部半完整图类和弱准传递图类中的禁止子图特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semi-strict Chordality of Digraphs

分享
查看原文
Semi-strict Chordality of Digraphs

Chordal graphs are important in structural graph theory. Chordal digraphs are a digraph analogue of chordal graphs and have been a subject of active studies recently. Unlike chordal graphs, chordal digraphs lack many structural properties such as forbidden subdigraph or representation characterizations. In this paper we introduce the notion of semi-strict chordal digraphs which form a class strictly between chordal digraphs and chordal graphs. Semi-strict chordal digraphs have rich structural properties. We characterize semi-strict chordal digraphs in terms of knotting graphs, a notion analogous to the one introduced by Gallai for the study of comparability graphs. We also give forbidden subdigraph characterizations of semi-strict chordal digraphs within the classes of locally semicomplete digraphs and weakly quasi-transitive digraphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信