考虑客流分配的城市轨道交通本地线路优化模型

IF 1.7 4区 工程技术 Q4 TRANSPORTATION
Peng He, Hao Tang, Feng Chen, Zijia Wang, Ying Sun, Bobo Yang, Jin Wang, Na Li
{"title":"考虑客流分配的城市轨道交通本地线路优化模型","authors":"Peng He, Hao Tang, Feng Chen, Zijia Wang, Ying Sun, Bobo Yang, Jin Wang, Na Li","doi":"10.1007/s40864-024-00212-w","DOIUrl":null,"url":null,"abstract":"<p>It is important to strengthen the research on urban rail transit (URT) existing line renovation strategies. In this paper, we investigate the optimization of bottlenecks that are less attractive but have strong travel demand in existing URT networks. A URT local line optimization model is constructed. The maximum passenger flow and minimum project cost are chosen as the optimization objective for the benefit of both passengers and operators, and several actual constraints are considered in the proposed model, such as the station interval. In order to obtain higher computational efficiency and accuracy, a passenger flow allocation method is embedded in a genetic algorithm with elitist preservation. Taking the local network of the Beijing URT as a case study, the calculation results show that the designed algorithm can quickly and effectively obtain the optimal solution, and the generated local line scheme is able not only to meet the regional travel demand, but also to optimize the connection relationship of the existing URT network. This study can provide a reference method for increasing the attraction of URT and optimization of existing URT networks.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Local Line Optimization Model for Urban Rail Considering Passenger Flow Allocation\",\"authors\":\"Peng He, Hao Tang, Feng Chen, Zijia Wang, Ying Sun, Bobo Yang, Jin Wang, Na Li\",\"doi\":\"10.1007/s40864-024-00212-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is important to strengthen the research on urban rail transit (URT) existing line renovation strategies. In this paper, we investigate the optimization of bottlenecks that are less attractive but have strong travel demand in existing URT networks. A URT local line optimization model is constructed. The maximum passenger flow and minimum project cost are chosen as the optimization objective for the benefit of both passengers and operators, and several actual constraints are considered in the proposed model, such as the station interval. In order to obtain higher computational efficiency and accuracy, a passenger flow allocation method is embedded in a genetic algorithm with elitist preservation. Taking the local network of the Beijing URT as a case study, the calculation results show that the designed algorithm can quickly and effectively obtain the optimal solution, and the generated local line scheme is able not only to meet the regional travel demand, but also to optimize the connection relationship of the existing URT network. This study can provide a reference method for increasing the attraction of URT and optimization of existing URT networks.</p>\",\"PeriodicalId\":44861,\"journal\":{\"name\":\"Urban Rail Transit\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Rail Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40864-024-00212-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40864-024-00212-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

加强对城市轨道交通(URT)既有线改造策略的研究非常重要。本文研究了既有城市轨道交通网络中吸引力较低但出行需求旺盛的瓶颈路段的优化问题。本文构建了一个城市轨道交通局部线路优化模型。从乘客和运营商的利益出发,选择最大客流量和最小项目成本作为优化目标,并在模型中考虑了多个实际约束条件,如车站间隔。为了获得更高的计算效率和准确性,将客流分配方法嵌入了精英保存遗传算法中。以北京城市轨道交通局部线网为例,计算结果表明所设计的算法能够快速有效地获得最优解,生成的局部线路方案既能满足区域出行需求,又能优化现有城市轨道交通线网的衔接关系。本研究可为提高城市轨道交通吸引力和优化现有城市轨道交通网络提供参考方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Local Line Optimization Model for Urban Rail Considering Passenger Flow Allocation

A Local Line Optimization Model for Urban Rail Considering Passenger Flow Allocation

It is important to strengthen the research on urban rail transit (URT) existing line renovation strategies. In this paper, we investigate the optimization of bottlenecks that are less attractive but have strong travel demand in existing URT networks. A URT local line optimization model is constructed. The maximum passenger flow and minimum project cost are chosen as the optimization objective for the benefit of both passengers and operators, and several actual constraints are considered in the proposed model, such as the station interval. In order to obtain higher computational efficiency and accuracy, a passenger flow allocation method is embedded in a genetic algorithm with elitist preservation. Taking the local network of the Beijing URT as a case study, the calculation results show that the designed algorithm can quickly and effectively obtain the optimal solution, and the generated local line scheme is able not only to meet the regional travel demand, but also to optimize the connection relationship of the existing URT network. This study can provide a reference method for increasing the attraction of URT and optimization of existing URT networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Rail Transit
Urban Rail Transit Multiple-
CiteScore
3.10
自引率
6.70%
发文量
20
审稿时长
5 weeks
期刊介绍: Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field. Specific topics cover: Column I: Urban Rail Transportation Operation and Management • urban rail transit flow theory, operation, planning, control and management • traffic and transport safety • traffic polices and economics • urban rail management • traffic information management • urban rail scheduling • train scheduling and management • strategies of ticket price • traffic information engineering & control • intelligent transportation system (ITS) and information technology • economics, finance, business & industry • train operation, control • transport Industries • transportation engineering Column II: Urban Rail Transportation Design and Planning • urban rail planning • pedestrian studies • sustainable transport engineering • rail electrification • rail signaling and communication • Intelligent & Automated Transport System Technology ? • rolling stock design theory and structural reliability • urban rail transit electrification and automation technologies • transport Industries • transportation engineering Column III: Civil Engineering • civil engineering technologies • maintenance of rail infrastructure • transportation infrastructure systems • roads, bridges, tunnels, and underground engineering ? • subgrade and pavement maintenance and performance Column IV: Equipments and Systems • mechanical-electronic technologies • manufacturing engineering • inspection for trains and rail • vehicle-track coupling system dynamics, simulation and control • superconductivity and levitation technology • magnetic suspension and evacuated tube transport • railway technology & engineering • Railway Transport Industries • transport & vehicle engineering Column V: other topics of interest • modern tram • interdisciplinary transportation research • environmental impacts such as vibration, noise and pollution Article types: • Papers. Reports of original research work. • Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems. • Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication. • Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信