对有限半群局部可嵌入性的限制

Pub Date : 2024-04-17 DOI:10.1007/s00233-024-10427-9
Dmitry Kudryavtsev
{"title":"对有限半群局部可嵌入性的限制","authors":"Dmitry Kudryavtsev","doi":"10.1007/s00233-024-10427-9","DOIUrl":null,"url":null,"abstract":"<p>We expand the concept of local embeddability into finite structures (LEF) for the class of semigroups with investigations of non-LEF structures, a closely related generalising property of local wrapping of finite structures (LWF) and inverse semigroups. The established results include a description of a family of non-LEF semigroups unifying the bicyclic monoid and Baumslag–Solitar groups and demonstrating that inverse LWF semigroups with finite number of idempotents are LEF.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restrictions on local embeddability into finite semigroups\",\"authors\":\"Dmitry Kudryavtsev\",\"doi\":\"10.1007/s00233-024-10427-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We expand the concept of local embeddability into finite structures (LEF) for the class of semigroups with investigations of non-LEF structures, a closely related generalising property of local wrapping of finite structures (LWF) and inverse semigroups. The established results include a description of a family of non-LEF semigroups unifying the bicyclic monoid and Baumslag–Solitar groups and demonstrating that inverse LWF semigroups with finite number of idempotents are LEF.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10427-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10427-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过对非有限结构的研究,扩展了有限结构半群的局部可嵌入性(LEF)概念,这是与有限结构局部包裹性(LWF)和逆半群密切相关的概括性质。已取得的成果包括描述了统一双环单元和鲍姆斯拉德-索利特群的非 LEF 半群族,并证明了具有有限幂级数的逆 LWF 半群是 LEF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Restrictions on local embeddability into finite semigroups

We expand the concept of local embeddability into finite structures (LEF) for the class of semigroups with investigations of non-LEF structures, a closely related generalising property of local wrapping of finite structures (LWF) and inverse semigroups. The established results include a description of a family of non-LEF semigroups unifying the bicyclic monoid and Baumslag–Solitar groups and demonstrating that inverse LWF semigroups with finite number of idempotents are LEF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信