半流拓扑敏感性

Pub Date : 2024-04-16 DOI:10.1007/s00233-024-10425-x
Ali Barzanouni, Somayyeh Jangjooye Shaldehi
{"title":"半流拓扑敏感性","authors":"Ali Barzanouni, Somayyeh Jangjooye Shaldehi","doi":"10.1007/s00233-024-10425-x","DOIUrl":null,"url":null,"abstract":"<p>We give a pointwise version of sensitivity in terms of open covers for a semiflow (<i>T</i>, <i>X</i>) of a topological semigroup <i>T</i> on a Hausdorff space <i>X</i> and call it a Hausdorff sensitive point. If <span>\\((X, {\\mathscr {U}})\\)</span> is a uniform space with topology <span>\\(\\tau \\)</span>, then the definition of Hausdorff sensitivity for <span>\\((T, (X, \\tau ))\\)</span> gives a pointwise version of sensitivity in terms of uniformity and we call it a uniformly sensitive point. For a semiflow (<i>T</i>, <i>X</i>) on a compact Hausdorff space <i>X</i>, these notions (i.e. Hausdorff sensitive point and uniformly sensitive point) are equal and they are <i>T</i>-invariant if <i>T</i> is a <i>C</i>-semigroup. They are not preserved by factor maps and subsystems, but behave slightly better with respect to lifting. We give the definition of a topologically equicontinuous pair for a semiflow (<i>T</i>, <i>X</i>) on a topological space <i>X</i> and show that if (<i>T</i>, <i>X</i>) is a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), for all <span>\\(y\\in X\\)</span>, then <span>\\(\\overline{Tx}= D_T(x)\\)</span> where </p><span>$$\\begin{aligned} D_T(x)= \\bigcap \\{ \\overline{TU}: \\text { for all open neighborhoods}\\, U\\, \\text {of}\\, x \\}. \\end{aligned}$$</span><p>We prove for a topologically transitive semiflow (<i>T</i>, <i>X</i>) of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point that the set of topologically equicontinuous points coincides with the set of transitive points. This implies that every minimal semiflow of <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point is topologically equicontinuous. Moreover, we show that if <i>X</i> is a regular space and (<i>T</i>, <i>X</i>) is not a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), then <i>x</i> is a Hausdorff sensitive point for (<i>T</i>, <i>X</i>). Hence, a minimal semiflow of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> is either topologically equicontinuous or topologically sensitive.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological sensitivity for semiflow\",\"authors\":\"Ali Barzanouni, Somayyeh Jangjooye Shaldehi\",\"doi\":\"10.1007/s00233-024-10425-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a pointwise version of sensitivity in terms of open covers for a semiflow (<i>T</i>, <i>X</i>) of a topological semigroup <i>T</i> on a Hausdorff space <i>X</i> and call it a Hausdorff sensitive point. If <span>\\\\((X, {\\\\mathscr {U}})\\\\)</span> is a uniform space with topology <span>\\\\(\\\\tau \\\\)</span>, then the definition of Hausdorff sensitivity for <span>\\\\((T, (X, \\\\tau ))\\\\)</span> gives a pointwise version of sensitivity in terms of uniformity and we call it a uniformly sensitive point. For a semiflow (<i>T</i>, <i>X</i>) on a compact Hausdorff space <i>X</i>, these notions (i.e. Hausdorff sensitive point and uniformly sensitive point) are equal and they are <i>T</i>-invariant if <i>T</i> is a <i>C</i>-semigroup. They are not preserved by factor maps and subsystems, but behave slightly better with respect to lifting. We give the definition of a topologically equicontinuous pair for a semiflow (<i>T</i>, <i>X</i>) on a topological space <i>X</i> and show that if (<i>T</i>, <i>X</i>) is a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), for all <span>\\\\(y\\\\in X\\\\)</span>, then <span>\\\\(\\\\overline{Tx}= D_T(x)\\\\)</span> where </p><span>$$\\\\begin{aligned} D_T(x)= \\\\bigcap \\\\{ \\\\overline{TU}: \\\\text { for all open neighborhoods}\\\\, U\\\\, \\\\text {of}\\\\, x \\\\}. \\\\end{aligned}$$</span><p>We prove for a topologically transitive semiflow (<i>T</i>, <i>X</i>) of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point that the set of topologically equicontinuous points coincides with the set of transitive points. This implies that every minimal semiflow of <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point is topologically equicontinuous. Moreover, we show that if <i>X</i> is a regular space and (<i>T</i>, <i>X</i>) is not a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), then <i>x</i> is a Hausdorff sensitive point for (<i>T</i>, <i>X</i>). Hence, a minimal semiflow of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> is either topologically equicontinuous or topologically sensitive.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10425-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10425-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了拓扑半群 T 在 Hausdorff 空间 X 上的半流 (T, X) 的开盖敏感性的点式版本,并称之为 Hausdorff 敏感点。如果 \((X, {\mathscr {U}})\) 是一个具有拓扑学 \(\tau \) 的均匀空间,那么 \((T, (X, \tau ))\) 的 Hausdorff 敏感性定义给出了均匀性敏感性的点版本,我们称它为均匀敏感点。对于紧凑 Hausdorff 空间 X 上的半流 (T, X),这些概念(即 Hausdorff 敏感点和均匀敏感点)是相等的,而且如果 T 是一个 C 半群,它们是 T 不变的。它们不受因子映射和子系统的影响,但在提升方面表现稍好。我们给出了拓扑空间 X 上的半流 (T, X) 的拓扑等连续对的定义,并证明了如果 (T, X) 是 (x, y) 中的拓扑等连续对,对于所有 \(y\in X\), 那么 \(\overline{Tx}= D_T(x)\) 其中 $$\begin{aligned}D_T(x)= \bigcap \{ \overline{TU}:\for all open neighborhoods(对于所有开放邻域), U\text {of}, x\}.\end{aligned}$$我们证明了对于正则空间 X 上具有拓扑等连续点的 C-半群 T 的拓扑传递半流 (T, X),拓扑等连续点的集合与传递点的集合重合。这意味着在有拓扑上等连续点的正则空间 X 上,C-半群 T 的每个最小半流都是拓扑上等连续的。此外,我们还证明,如果 X 是正则空间,且 (T, X) 不是 (x, y) 中的拓扑等连续对,那么 x 是 (T, X) 的豪斯多夫敏感点。因此,正则空间 X 上的 C-semigroup T 的最小半流要么是拓扑等连续的,要么是拓扑敏感的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Topological sensitivity for semiflow

We give a pointwise version of sensitivity in terms of open covers for a semiflow (TX) of a topological semigroup T on a Hausdorff space X and call it a Hausdorff sensitive point. If \((X, {\mathscr {U}})\) is a uniform space with topology \(\tau \), then the definition of Hausdorff sensitivity for \((T, (X, \tau ))\) gives a pointwise version of sensitivity in terms of uniformity and we call it a uniformly sensitive point. For a semiflow (TX) on a compact Hausdorff space X, these notions (i.e. Hausdorff sensitive point and uniformly sensitive point) are equal and they are T-invariant if T is a C-semigroup. They are not preserved by factor maps and subsystems, but behave slightly better with respect to lifting. We give the definition of a topologically equicontinuous pair for a semiflow (TX) on a topological space X and show that if (TX) is a topologically equicontinuous pair in (xy), for all \(y\in X\), then \(\overline{Tx}= D_T(x)\) where

$$\begin{aligned} D_T(x)= \bigcap \{ \overline{TU}: \text { for all open neighborhoods}\, U\, \text {of}\, x \}. \end{aligned}$$

We prove for a topologically transitive semiflow (TX) of a C-semigroup T on a regular space X with a topologically equicontinuous point that the set of topologically equicontinuous points coincides with the set of transitive points. This implies that every minimal semiflow of C-semigroup T on a regular space X with a topologically equicontinuous point is topologically equicontinuous. Moreover, we show that if X is a regular space and (TX) is not a topologically equicontinuous pair in (xy), then x is a Hausdorff sensitive point for (TX). Hence, a minimal semiflow of a C-semigroup T on a regular space X is either topologically equicontinuous or topologically sensitive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信