节段式隧道衬砌在各种动荷载条件下的响应和损伤特征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinling Chai, Ke Wang, Shihao Wang, Yong Wang, Yi Liu
{"title":"节段式隧道衬砌在各种动荷载条件下的响应和损伤特征","authors":"Jinling Chai, Ke Wang, Shihao Wang, Yong Wang, Yi Liu","doi":"10.1155/2024/1008274","DOIUrl":null,"url":null,"abstract":"This paper investigates segmental lining, developing a numerical model to explore the dynamic interaction between saturated soil and the lining structure, and analyses the effects of the angle of incident load and the wavelength-to-diameter ratio on the displacement, deformation, and distribution of the plastic zone of the structure. The findings demonstrate that the structure experiences vertical compressive deformation during ground shock predominantly. The structure can be categorised into the major deformation region (with an angle within 60° of the vertical direction) and the minor deformation region (with an angle within 30° of the horizontal direction), determined by the structure’s radial deformation. The maximum radial velocity of the nodes in the major deformation area is greater and swifter, whereas the maximum radial velocity of the nodes in the minor deformation region is lesser and mostly equivalent in extent. The maximum radial displacement of the nodes in the major deformation area is highly receptive to the loading wavelength–diameter ratio (<i>L</i>/<i>D</i>) (the ratio of the load wavelength to the structure’s outer diameter) when the wavelength-to-diameter ratio (<i>L</i>/<i>D</i>) is small (1 ≤ <i>L</i>/<i>D</i> ≤ 5). Conversely, the maximum radial displacement in the minor deformation area is considerably sensitive to the wavelength–diameter ratio when 5 ≤ <i>L</i>/<i>D</i> ≤ 30. The total displacement and velocity of the structure remain unaffected by the angle of load incidence. However, it affects the maximum deformation of the structure as well as the location where the maximum node velocity occurs. In addition, the joint surface of the structure experiences the highest plastic strain at an angle of load incidence of 60°.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response and Damage Characteristics of Segmental Tunnel Lining under Various Dynamic Load Conditions\",\"authors\":\"Jinling Chai, Ke Wang, Shihao Wang, Yong Wang, Yi Liu\",\"doi\":\"10.1155/2024/1008274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates segmental lining, developing a numerical model to explore the dynamic interaction between saturated soil and the lining structure, and analyses the effects of the angle of incident load and the wavelength-to-diameter ratio on the displacement, deformation, and distribution of the plastic zone of the structure. The findings demonstrate that the structure experiences vertical compressive deformation during ground shock predominantly. The structure can be categorised into the major deformation region (with an angle within 60° of the vertical direction) and the minor deformation region (with an angle within 30° of the horizontal direction), determined by the structure’s radial deformation. The maximum radial velocity of the nodes in the major deformation area is greater and swifter, whereas the maximum radial velocity of the nodes in the minor deformation region is lesser and mostly equivalent in extent. The maximum radial displacement of the nodes in the major deformation area is highly receptive to the loading wavelength–diameter ratio (<i>L</i>/<i>D</i>) (the ratio of the load wavelength to the structure’s outer diameter) when the wavelength-to-diameter ratio (<i>L</i>/<i>D</i>) is small (1 ≤ <i>L</i>/<i>D</i> ≤ 5). Conversely, the maximum radial displacement in the minor deformation area is considerably sensitive to the wavelength–diameter ratio when 5 ≤ <i>L</i>/<i>D</i> ≤ 30. The total displacement and velocity of the structure remain unaffected by the angle of load incidence. However, it affects the maximum deformation of the structure as well as the location where the maximum node velocity occurs. In addition, the joint surface of the structure experiences the highest plastic strain at an angle of load incidence of 60°.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1008274\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/1008274","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文对分段式衬砌进行了研究,建立了一个数值模型来探讨饱和土壤与衬砌结构之间的动态相互作用,并分析了入射荷载角度和波长直径比对结构的位移、变形和塑性区分布的影响。研究结果表明,该结构在地震动过程中主要经历垂直压缩变形。根据结构的径向变形,可将结构分为主要变形区(与垂直方向的夹角在 60°以内)和次要变形区(与水平方向的夹角在 30°以内)。大变形区节点的最大径向速度较大,速度较快,而小变形区节点的最大径向速度较小,范围基本相当。当波长直径比(L/D)较小时(1 ≤ L/D ≤ 5),主要变形区节点的最大径向位移对加载波长直径比(加载波长与结构外径之比)的影响很大。相反,当 5 ≤ L/D ≤ 30 时,小变形区的最大径向位移对波长直径比相当敏感。结构的总位移和速度不受荷载入射角的影响。但会影响结构的最大变形以及出现最大节点速度的位置。此外,在荷载入射角为 60°时,结构的接合面产生的塑性应变最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Response and Damage Characteristics of Segmental Tunnel Lining under Various Dynamic Load Conditions
This paper investigates segmental lining, developing a numerical model to explore the dynamic interaction between saturated soil and the lining structure, and analyses the effects of the angle of incident load and the wavelength-to-diameter ratio on the displacement, deformation, and distribution of the plastic zone of the structure. The findings demonstrate that the structure experiences vertical compressive deformation during ground shock predominantly. The structure can be categorised into the major deformation region (with an angle within 60° of the vertical direction) and the minor deformation region (with an angle within 30° of the horizontal direction), determined by the structure’s radial deformation. The maximum radial velocity of the nodes in the major deformation area is greater and swifter, whereas the maximum radial velocity of the nodes in the minor deformation region is lesser and mostly equivalent in extent. The maximum radial displacement of the nodes in the major deformation area is highly receptive to the loading wavelength–diameter ratio (L/D) (the ratio of the load wavelength to the structure’s outer diameter) when the wavelength-to-diameter ratio (L/D) is small (1 ≤ L/D ≤ 5). Conversely, the maximum radial displacement in the minor deformation area is considerably sensitive to the wavelength–diameter ratio when 5 ≤ L/D ≤ 30. The total displacement and velocity of the structure remain unaffected by the angle of load incidence. However, it affects the maximum deformation of the structure as well as the location where the maximum node velocity occurs. In addition, the joint surface of the structure experiences the highest plastic strain at an angle of load incidence of 60°.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信