球形图和旗形图的安全度量维度

IF 0.8 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Sultan Almotairi, Olayan Alharbi, Zaid Alzaid, Badr Almutairi, Basma Mohamed
{"title":"球形图和旗形图的安全度量维度","authors":"Sultan Almotairi, Olayan Alharbi, Zaid Alzaid, Badr Almutairi, Basma Mohamed","doi":"10.1155/2024/3084976","DOIUrl":null,"url":null,"abstract":"Let <i>G</i> = (<i>V</i>, <i>E</i>) be a connected, basic, and finite graph. A subset <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 19.548 12.5794\" width=\"19.548pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.917,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"23.1301838 -9.28833 19.35 12.5794\" width=\"19.35pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.18,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.691,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,34.62,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,39.566,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"44.6591838 -9.28833 14.84 12.5794\" width=\"14.84pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,44.709,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,51.638,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,56.585,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"61.6781838 -9.28833 18.427 12.5794\" width=\"18.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,61.728,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,66.871,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,72.014,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,77.191,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"82.28418380000001 -9.28833 16.887 12.5794\" width=\"16.887pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,82.334,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,89.263,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,94.41,0)\"></path></g></svg></span> of <i>V</i>(<i>G</i>) is said to be a resolving set if for any <i>y</i> ∈ <i>V</i>(<i>G</i>), the code of <i>y</i> with regards to <i>T</i>, represented by <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 31.7255 12.7178\" width=\"31.7255pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,15.009,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,19.507,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.036,0)\"></path></g></svg>,</span> which is defined as <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 42.797 12.7178\" width=\"42.797pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"><use xlink:href=\"#g50-85\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.009,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.507,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,27.036,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,35.166,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"46.3791838 -9.28833 26.552 12.7178\" width=\"26.552pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,46.429,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,53.644,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.142,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,65.071,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,70.017,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"75.1101838 -9.28833 14.992 12.7178\" width=\"14.992pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,75.16,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,82.69,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,87.188,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"92.28118380000001 -9.28833 26.552 12.7178\" width=\"26.552pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,92.331,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.013,0,0,-0.013,99.546,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,104.044,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,110.973,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,115.919,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"121.0121838 -9.28833 14.992 12.7178\" width=\"14.992pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,121.062,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,128.592,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,133.09,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"138.1831838 -9.28833 18.426 12.7178\" width=\"18.426pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,138.233,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,143.376,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,148.519,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,153.695,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"158.7891838 -9.28833 26.753 12.7178\" width=\"26.753pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,158.839,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.013,0,0,-0.013,166.054,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,170.552,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,177.481,3.132)\"><use xlink:href=\"#g50-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,182.628,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"187.72118379999998 -9.28833 12.652 12.7178\" width=\"12.652pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,187.771,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,195.301,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span></span> is different for various <i>y</i>. The dimension of <i>G</i> is the smallest cardinality of a resolving set and is denoted by dim(<i>G</i>). If, for any <i>t</i> ∈ <i>V</i> – <i>S</i>, there exists <i>r</i> ∈ <i>S</i> such that <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 46.964 11.5564\" width=\"46.964pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.634,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,17.42,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.931,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.419,0)\"><use xlink:href=\"#g113-126\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.93,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,39.333,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"49.820183799999995 -9.28833 13.742 11.5564\" width=\"13.742pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,49.87,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,54.381,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,58.814,0)\"><use xlink:href=\"#g113-126\"></use></g></svg></span> is a resolving set, then the resolving set <i>S</i> is secure. The secure metric dimension of 𝐺 is the cardinal number of the minimum secure resolving set. Determining the secure metric dimension of any given graph is an NP-complete problem. In addition, there are several uses for the metric dimension in a variety of fields, including image processing, pattern recognition, network discovery and verification, geographic routing protocols, and combinatorial optimization. In this paper, we determine the secure metric dimension of special graphs such as a globe graph <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.3836 12.5794\" width=\"17.3836pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,8.892,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.064,3.132)\"></path></g></svg>,</span> flag graph <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 16.3789 12.5794\" width=\"16.3789pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"><use xlink:href=\"#g113-109\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,11.067,3.132)\"><use xlink:href=\"#g50-111\"></use></g></svg>,</span> <i>H</i>- graph of path <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 11.9554 11.927\" width=\"11.9554pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.656,3.132)\"><use xlink:href=\"#g50-111\"></use></g></svg>,</span> a bistar graph <span><svg height=\"16.5945pt\" style=\"vertical-align:-5.003099pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 19.8929 16.5945\" width=\"19.8929pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.813,-5.741)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.748,3.784)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.407,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,14.564,3.784)\"><use xlink:href=\"#g50-111\"></use></g></svg>,</span> and tadpole graph <span><svg height=\"13.3128pt\" style=\"vertical-align:-4.35068pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 21.7667 13.3128\" width=\"21.7667pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.176,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,11.608,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,13.765,3.132)\"></path></g></svg>.</span> Finally, we derive the explicit formulas for the secure metric dimension of tadpole graph <span><svg height=\"13.3128pt\" style=\"vertical-align:-4.35068pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 21.995 13.3128\" width=\"21.995pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.176,3.132)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,11.835,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,13.992,3.132)\"><use xlink:href=\"#g50-110\"></use></g></svg>,</span> subdivision of tadpole graph <span><svg height=\"13.639pt\" style=\"vertical-align:-4.35067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 36.9554 13.639\" width=\"36.9554pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.136,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.634,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,17.81,3.132)\"><use xlink:href=\"#g50-52\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,22.242,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,24.399,3.132)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.274,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span> and subdivision of tadpole graph <span><svg height=\"13.639pt\" style=\"vertical-align:-4.35067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 37.1838 13.639\" width=\"37.1838pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.136,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.634,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,17.81,3.132)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,22.47,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,24.626,3.132)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.503,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span>","PeriodicalId":44178,"journal":{"name":"Advances in Operations Research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Secure Metric Dimension of the Globe Graph and the Flag Graph\",\"authors\":\"Sultan Almotairi, Olayan Alharbi, Zaid Alzaid, Badr Almutairi, Basma Mohamed\",\"doi\":\"10.1155/2024/3084976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>G</i> = (<i>V</i>, <i>E</i>) be a connected, basic, and finite graph. A subset <span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 19.548 12.5794\\\" width=\\\"19.548pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.917,0)\\\"></path></g></svg><span></span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"23.1301838 -9.28833 19.35 12.5794\\\" width=\\\"19.35pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,23.18,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.691,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,34.62,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,39.566,0)\\\"></path></g></svg><span></span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"44.6591838 -9.28833 14.84 12.5794\\\" width=\\\"14.84pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,44.709,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,51.638,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,56.585,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"61.6781838 -9.28833 18.427 12.5794\\\" width=\\\"18.427pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,61.728,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,66.871,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,72.014,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,77.191,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"82.28418380000001 -9.28833 16.887 12.5794\\\" width=\\\"16.887pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,82.334,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,89.263,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,94.41,0)\\\"></path></g></svg></span> of <i>V</i>(<i>G</i>) is said to be a resolving set if for any <i>y</i> ∈ <i>V</i>(<i>G</i>), the code of <i>y</i> with regards to <i>T</i>, represented by <span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 31.7255 12.7178\\\" width=\\\"31.7255pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.619,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,15.009,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,19.507,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.036,0)\\\"></path></g></svg>,</span> which is defined as <span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 42.797 12.7178\\\" width=\\\"42.797pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-68\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.619,3.132)\\\"><use xlink:href=\\\"#g50-85\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.009,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,19.507,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,27.036,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,35.166,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"46.3791838 -9.28833 26.552 12.7178\\\" width=\\\"26.552pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,46.429,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,53.644,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,58.142,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,65.071,3.132)\\\"><use xlink:href=\\\"#g50-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,70.017,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"75.1101838 -9.28833 14.992 12.7178\\\" width=\\\"14.992pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,75.16,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,82.69,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,87.188,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"92.28118380000001 -9.28833 26.552 12.7178\\\" width=\\\"26.552pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,92.331,0)\\\"><use xlink:href=\\\"#g113-101\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,99.546,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,104.044,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,110.973,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,115.919,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"121.0121838 -9.28833 14.992 12.7178\\\" width=\\\"14.992pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,121.062,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,128.592,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,133.09,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"138.1831838 -9.28833 18.426 12.7178\\\" width=\\\"18.426pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,138.233,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,143.376,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,148.519,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,153.695,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"158.7891838 -9.28833 26.753 12.7178\\\" width=\\\"26.753pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,158.839,0)\\\"><use xlink:href=\\\"#g113-101\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,166.054,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,170.552,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,177.481,3.132)\\\"><use xlink:href=\\\"#g50-108\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,182.628,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"187.72118379999998 -9.28833 12.652 12.7178\\\" width=\\\"12.652pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,187.771,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,195.301,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>,</span></span> is different for various <i>y</i>. The dimension of <i>G</i> is the smallest cardinality of a resolving set and is denoted by dim(<i>G</i>). If, for any <i>t</i> ∈ <i>V</i> – <i>S</i>, there exists <i>r</i> ∈ <i>S</i> such that <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 46.964 11.5564\\\" width=\\\"46.964pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,4.498,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.634,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,17.42,0)\\\"><use xlink:href=\\\"#g113-124\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.931,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.419,0)\\\"><use xlink:href=\\\"#g113-126\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.93,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,39.333,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"49.820183799999995 -9.28833 13.742 11.5564\\\" width=\\\"13.742pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,49.87,0)\\\"><use xlink:href=\\\"#g113-124\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,54.381,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,58.814,0)\\\"><use xlink:href=\\\"#g113-126\\\"></use></g></svg></span> is a resolving set, then the resolving set <i>S</i> is secure. The secure metric dimension of 𝐺 is the cardinal number of the minimum secure resolving set. Determining the secure metric dimension of any given graph is an NP-complete problem. In addition, there are several uses for the metric dimension in a variety of fields, including image processing, pattern recognition, network discovery and verification, geographic routing protocols, and combinatorial optimization. In this paper, we determine the secure metric dimension of special graphs such as a globe graph <span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.3836 12.5794\\\" width=\\\"17.3836pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,8.892,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.064,3.132)\\\"></path></g></svg>,</span> flag graph <span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 16.3789 12.5794\\\" width=\\\"16.3789pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"><use xlink:href=\\\"#g113-109\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,11.067,3.132)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g></svg>,</span> <i>H</i>- graph of path <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 11.9554 11.927\\\" width=\\\"11.9554pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.656,3.132)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g></svg>,</span> a bistar graph <span><svg height=\\\"16.5945pt\\\" style=\\\"vertical-align:-5.003099pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 19.8929 16.5945\\\" width=\\\"19.8929pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.813,-5.741)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.748,3.784)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.407,3.784)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,14.564,3.784)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g></svg>,</span> and tadpole graph <span><svg height=\\\"13.3128pt\\\" style=\\\"vertical-align:-4.35068pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.96212 21.7667 13.3128\\\" width=\\\"21.7667pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-85\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.176,3.132)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,11.608,3.132)\\\"><use xlink:href=\\\"#g50-45\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,13.765,3.132)\\\"></path></g></svg>.</span> Finally, we derive the explicit formulas for the secure metric dimension of tadpole graph <span><svg height=\\\"13.3128pt\\\" style=\\\"vertical-align:-4.35068pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.96212 21.995 13.3128\\\" width=\\\"21.995pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-85\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.176,3.132)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,11.835,3.132)\\\"><use xlink:href=\\\"#g50-45\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,13.992,3.132)\\\"><use xlink:href=\\\"#g50-110\\\"></use></g></svg>,</span> subdivision of tadpole graph <span><svg height=\\\"13.639pt\\\" style=\\\"vertical-align:-4.35067pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 36.9554 13.639\\\" width=\\\"36.9554pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-84\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.136,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.634,0)\\\"><use xlink:href=\\\"#g113-85\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,17.81,3.132)\\\"><use xlink:href=\\\"#g50-52\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,22.242,3.132)\\\"><use xlink:href=\\\"#g50-45\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,24.399,3.132)\\\"><use xlink:href=\\\"#g50-110\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.274,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>,</span> and subdivision of tadpole graph <span><svg height=\\\"13.639pt\\\" style=\\\"vertical-align:-4.35067pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 37.1838 13.639\\\" width=\\\"37.1838pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-84\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.136,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.634,0)\\\"><use xlink:href=\\\"#g113-85\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,17.81,3.132)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,22.47,3.132)\\\"><use xlink:href=\\\"#g50-45\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,24.626,3.132)\\\"><use xlink:href=\\\"#g50-110\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.503,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>.</span>\",\"PeriodicalId\":44178,\"journal\":{\"name\":\"Advances in Operations Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3084976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3084976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

设 G = (V, E) 是一个连通的基本有限图。如果对于任意 y ∈ V(G),y 关于 T 的代码(用 , 表示)对于不同的 y 都不同,则称 V(G) 的一个子集为解析集。如果对于任意 t∈V - S,存在 r∈S 使得是解析集合,那么解析集合 S 是安全的。𝐺的安全度量维是最小安全解析集的心数。确定任何给定图的安全度量维度都是一个 NP-完全问题。此外,度量维度在图像处理、模式识别、网络发现与验证、地理路由协议和组合优化等多个领域都有多种用途。在本文中,我们确定了一些特殊图的安全度量维度,如地球仪图、旗帜图、路径 H- 图、双星图和蝌蚪图。最后,我们推导出了蝌蚪图、蝌蚪图细分、蝌蚪图细分的安全度量维度的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Secure Metric Dimension of the Globe Graph and the Flag Graph
Let G = (V, E) be a connected, basic, and finite graph. A subset of V(G) is said to be a resolving set if for any y ∈ V(G), the code of y with regards to T, represented by , which is defined as , is different for various y. The dimension of G is the smallest cardinality of a resolving set and is denoted by dim(G). If, for any tVS, there exists r ∈ S such that is a resolving set, then the resolving set S is secure. The secure metric dimension of 𝐺 is the cardinal number of the minimum secure resolving set. Determining the secure metric dimension of any given graph is an NP-complete problem. In addition, there are several uses for the metric dimension in a variety of fields, including image processing, pattern recognition, network discovery and verification, geographic routing protocols, and combinatorial optimization. In this paper, we determine the secure metric dimension of special graphs such as a globe graph , flag graph , H- graph of path , a bistar graph , and tadpole graph . Finally, we derive the explicit formulas for the secure metric dimension of tadpole graph , subdivision of tadpole graph , and subdivision of tadpole graph .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Operations Research
Advances in Operations Research OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
2.10
自引率
0.00%
发文量
12
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信