Li-Wen Liu , Cheng-Ping Chang , Yu-Wen Lin , Wei-Ming Chu
{"title":"评估橡胶手套材料在反复接触和去污后对有机溶剂的防护效果","authors":"Li-Wen Liu , Cheng-Ping Chang , Yu-Wen Lin , Wei-Ming Chu","doi":"10.1016/j.shaw.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Glove reuse poses risks, as chemicals can persist even after cleaning. Decontamination methods like thermal aeration, recommended by US OSHA, vary in effectiveness. Some studies show promising results, while others emphasize the importance of considering both permeation and tensile strength changes. This research advocates for informed glove reuse, emphasizing optimal thermal aeration temperatures and providing evidence to guide users in maintaining protection efficiency.</p></div><div><h3>Methods</h3><p>The investigation evaluated Neoprene and Nitrile gloves (22 mils). Permeation tests with toluene and acetone adhered to American Society for Testing Materials (ASTM) F739 standards. Decontamination optimization involved aeration at various temperatures. The experiment proceeded with a maximum of 22 re-exposure cycles. Tensile strength and elongation were assessed following ASTM D 412 protocols. Breakthrough time differences were statistically analyzed using <em>t</em>-test and ANOVA.</p></div><div><h3>Results</h3><p>At room temperature, glove residuals decreased, and standardized breakthrough time (SBT)<sub>2</sub> was significantly lower than SBT<sub>1</sub>, indicating reduced protection. Higher temperature decontamination accelerated residual removal, with ΔSBT (SBT<sub>2</sub>/SBT<sub>1</sub>) exceeding 100%, signifying restored protection. Tensile tests showed stable neoprene properties postdecontamination. Results underscore thermal aeration's efficacy for gloves reuse, emphasizing temperature's pivotal role. Findings recommend meticulous management strategies, especially post-breakthrough, to uphold glove-protective performance.</p></div><div><h3>Conclusions</h3><p>Thermal aeration at 100°C for 1 hour proves effective, restoring protection without compromising glove strength. The study, covering twenty cycles, suggests safe glove reuse with proper decontamination, reducing costs significantly. However, limitations in chemical-glove combinations and exclusive focus on specific gloves caution against broad generalization. The absence of regulatory directives on glove reuse highlight the importance of informed selection and rigorous decontamination validation for workplace safety practices.</p></div>","PeriodicalId":56149,"journal":{"name":"Safety and Health at Work","volume":"15 2","pages":"Pages 228-235"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2093791124000222/pdfft?md5=6a4c9ac5f1695ce4b4506cbcfd3fea6f&pid=1-s2.0-S2093791124000222-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Protective Effectiveness of Rubber Glove Materials Against Organic Solvents Upon Repeated Exposure and Decontamination\",\"authors\":\"Li-Wen Liu , Cheng-Ping Chang , Yu-Wen Lin , Wei-Ming Chu\",\"doi\":\"10.1016/j.shaw.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Glove reuse poses risks, as chemicals can persist even after cleaning. Decontamination methods like thermal aeration, recommended by US OSHA, vary in effectiveness. Some studies show promising results, while others emphasize the importance of considering both permeation and tensile strength changes. This research advocates for informed glove reuse, emphasizing optimal thermal aeration temperatures and providing evidence to guide users in maintaining protection efficiency.</p></div><div><h3>Methods</h3><p>The investigation evaluated Neoprene and Nitrile gloves (22 mils). Permeation tests with toluene and acetone adhered to American Society for Testing Materials (ASTM) F739 standards. Decontamination optimization involved aeration at various temperatures. The experiment proceeded with a maximum of 22 re-exposure cycles. Tensile strength and elongation were assessed following ASTM D 412 protocols. Breakthrough time differences were statistically analyzed using <em>t</em>-test and ANOVA.</p></div><div><h3>Results</h3><p>At room temperature, glove residuals decreased, and standardized breakthrough time (SBT)<sub>2</sub> was significantly lower than SBT<sub>1</sub>, indicating reduced protection. Higher temperature decontamination accelerated residual removal, with ΔSBT (SBT<sub>2</sub>/SBT<sub>1</sub>) exceeding 100%, signifying restored protection. Tensile tests showed stable neoprene properties postdecontamination. Results underscore thermal aeration's efficacy for gloves reuse, emphasizing temperature's pivotal role. Findings recommend meticulous management strategies, especially post-breakthrough, to uphold glove-protective performance.</p></div><div><h3>Conclusions</h3><p>Thermal aeration at 100°C for 1 hour proves effective, restoring protection without compromising glove strength. The study, covering twenty cycles, suggests safe glove reuse with proper decontamination, reducing costs significantly. However, limitations in chemical-glove combinations and exclusive focus on specific gloves caution against broad generalization. The absence of regulatory directives on glove reuse highlight the importance of informed selection and rigorous decontamination validation for workplace safety practices.</p></div>\",\"PeriodicalId\":56149,\"journal\":{\"name\":\"Safety and Health at Work\",\"volume\":\"15 2\",\"pages\":\"Pages 228-235\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2093791124000222/pdfft?md5=6a4c9ac5f1695ce4b4506cbcfd3fea6f&pid=1-s2.0-S2093791124000222-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Safety and Health at Work\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2093791124000222\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Safety and Health at Work","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2093791124000222","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Evaluating the Protective Effectiveness of Rubber Glove Materials Against Organic Solvents Upon Repeated Exposure and Decontamination
Background
Glove reuse poses risks, as chemicals can persist even after cleaning. Decontamination methods like thermal aeration, recommended by US OSHA, vary in effectiveness. Some studies show promising results, while others emphasize the importance of considering both permeation and tensile strength changes. This research advocates for informed glove reuse, emphasizing optimal thermal aeration temperatures and providing evidence to guide users in maintaining protection efficiency.
Methods
The investigation evaluated Neoprene and Nitrile gloves (22 mils). Permeation tests with toluene and acetone adhered to American Society for Testing Materials (ASTM) F739 standards. Decontamination optimization involved aeration at various temperatures. The experiment proceeded with a maximum of 22 re-exposure cycles. Tensile strength and elongation were assessed following ASTM D 412 protocols. Breakthrough time differences were statistically analyzed using t-test and ANOVA.
Results
At room temperature, glove residuals decreased, and standardized breakthrough time (SBT)2 was significantly lower than SBT1, indicating reduced protection. Higher temperature decontamination accelerated residual removal, with ΔSBT (SBT2/SBT1) exceeding 100%, signifying restored protection. Tensile tests showed stable neoprene properties postdecontamination. Results underscore thermal aeration's efficacy for gloves reuse, emphasizing temperature's pivotal role. Findings recommend meticulous management strategies, especially post-breakthrough, to uphold glove-protective performance.
Conclusions
Thermal aeration at 100°C for 1 hour proves effective, restoring protection without compromising glove strength. The study, covering twenty cycles, suggests safe glove reuse with proper decontamination, reducing costs significantly. However, limitations in chemical-glove combinations and exclusive focus on specific gloves caution against broad generalization. The absence of regulatory directives on glove reuse highlight the importance of informed selection and rigorous decontamination validation for workplace safety practices.
期刊介绍:
Safety and Health at Work (SH@W) is an international, peer-reviewed, interdisciplinary journal published quarterly in English beginning in 2010. The journal is aimed at providing grounds for the exchange of ideas and data developed through research experience in the broad field of occupational health and safety. Articles may deal with scientific research to improve workers'' health and safety by eliminating occupational accidents and diseases, pursuing a better working life, and creating a safe and comfortable working environment. The journal focuses primarily on original articles across the whole scope of occupational health and safety, but also welcomes up-to-date review papers and short communications and commentaries on urgent issues and case studies on unique epidemiological survey, methods of accident investigation, and analysis. High priority will be given to articles on occupational epidemiology, medicine, hygiene, toxicology, nursing and health services, work safety, ergonomics, work organization, engineering of safety (mechanical, electrical, chemical, and construction), safety management and policy, and studies related to economic evaluation and its social policy and organizational aspects. Its abbreviated title is Saf Health Work.