{"title":"利用图卷积-间隔-2 型模糊网络的脑连接性分析对科学创新技能进行认知评估","authors":"Sayantani Ghosh;Amit Konar;Atulya K. Nagar","doi":"10.1109/TCDS.2024.3390005","DOIUrl":null,"url":null,"abstract":"Scientific creativity refers to natural/automated genesis of innovations in science, propelling scientific, technological, industrial, and/or societal progress. Mental paper folding (MPF) requires spatial reasoning, which is an important attribute to determine creative potential of people. The article proposes a novel approach to determine creative potential of people from their brain-connectivity network (BCN) during their participation in MPF tasks using functional near-infrared spectroscopy (fNIRS). The work involves three phases. The first phase includes construction of BCN using Pearson's correlation method. The centrality features of the nodes in the network are assessed in the second phase and transferred to a proposed graph convolutional-interval type-2 fuzzy network (GC-IT2FN) in the third phase to classify the creative potential of individuals in four grades. The novelty of the work includes: 1) a novel self-attention mechanism in the network to guide graph convolution layers to focus on the most relevant nodes; 2) selection of a new activation function, Logish, after graph convolution to enhance classifier accuracy; and 3) utilizing the promising region in the footprint of uncertainty (FOU) of the used fuzzy sets of IT2FN-based classifier to reduce the effect of uncertainty in brain data on classifier performance. Experiments conducted demonstrate the efficacy of the proposed framework in contrast to traditional approaches.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 5","pages":"1872-1886"},"PeriodicalIF":5.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive Assessment of Scientific Creative Skill by Brain-Connectivity Analysis Using Graph Convolutional Interval Type-2 Fuzzy Network\",\"authors\":\"Sayantani Ghosh;Amit Konar;Atulya K. Nagar\",\"doi\":\"10.1109/TCDS.2024.3390005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific creativity refers to natural/automated genesis of innovations in science, propelling scientific, technological, industrial, and/or societal progress. Mental paper folding (MPF) requires spatial reasoning, which is an important attribute to determine creative potential of people. The article proposes a novel approach to determine creative potential of people from their brain-connectivity network (BCN) during their participation in MPF tasks using functional near-infrared spectroscopy (fNIRS). The work involves three phases. The first phase includes construction of BCN using Pearson's correlation method. The centrality features of the nodes in the network are assessed in the second phase and transferred to a proposed graph convolutional-interval type-2 fuzzy network (GC-IT2FN) in the third phase to classify the creative potential of individuals in four grades. The novelty of the work includes: 1) a novel self-attention mechanism in the network to guide graph convolution layers to focus on the most relevant nodes; 2) selection of a new activation function, Logish, after graph convolution to enhance classifier accuracy; and 3) utilizing the promising region in the footprint of uncertainty (FOU) of the used fuzzy sets of IT2FN-based classifier to reduce the effect of uncertainty in brain data on classifier performance. Experiments conducted demonstrate the efficacy of the proposed framework in contrast to traditional approaches.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":\"16 5\",\"pages\":\"1872-1886\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10502296/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10502296/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cognitive Assessment of Scientific Creative Skill by Brain-Connectivity Analysis Using Graph Convolutional Interval Type-2 Fuzzy Network
Scientific creativity refers to natural/automated genesis of innovations in science, propelling scientific, technological, industrial, and/or societal progress. Mental paper folding (MPF) requires spatial reasoning, which is an important attribute to determine creative potential of people. The article proposes a novel approach to determine creative potential of people from their brain-connectivity network (BCN) during their participation in MPF tasks using functional near-infrared spectroscopy (fNIRS). The work involves three phases. The first phase includes construction of BCN using Pearson's correlation method. The centrality features of the nodes in the network are assessed in the second phase and transferred to a proposed graph convolutional-interval type-2 fuzzy network (GC-IT2FN) in the third phase to classify the creative potential of individuals in four grades. The novelty of the work includes: 1) a novel self-attention mechanism in the network to guide graph convolution layers to focus on the most relevant nodes; 2) selection of a new activation function, Logish, after graph convolution to enhance classifier accuracy; and 3) utilizing the promising region in the footprint of uncertainty (FOU) of the used fuzzy sets of IT2FN-based classifier to reduce the effect of uncertainty in brain data on classifier performance. Experiments conducted demonstrate the efficacy of the proposed framework in contrast to traditional approaches.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.