DREAMweb:基于图形的核磁共振蛋白质结构建模在线工具

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2024-04-17 DOI:10.1002/pmic.202300379
Niladri Ranajan Das, Kunal Narayan Chaudhury, Debnath Pal
{"title":"DREAMweb:基于图形的核磁共振蛋白质结构建模在线工具","authors":"Niladri Ranajan Das,&nbsp;Kunal Narayan Chaudhury,&nbsp;Debnath Pal","doi":"10.1002/pmic.202300379","DOIUrl":null,"url":null,"abstract":"<p>The value of accurate protein structural models closely conforming to the experimental data is indisputable. DREAMweb deploys an improved DREAM algorithm, DREAMv2, that incorporates a tighter bound in the constraint set of the underlying optimization approach. This reduces the artifacts while modeling the protein structure by solving the distance-geometry problem. DREAMv2 follows a bottom-up strategy of building smaller substructures for regions with a larger concentration of experimental bounds and consolidating them before modeling the rest of the protein structure. This improves secondary structure conformance in the final models consistent with experimental data. The proposed method efficiently models regions with sparse coverage of experimental data by reducing the possibility of artifacts compared to DREAM. To balance performance and accuracy, smaller substructures (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>200</mn>\n </mrow>\n <annotation>$\\sim 200$</annotation>\n </semantics></math> atoms) are solved in this regime, allowing faster builds for the other parts under relaxed conditions. DREAMweb is accessible as an internet resource. The improvements in results are showcased through benchmarks on 10 structures. DREAMv2 can be used in tandem with any NMR-based protein structure determination workflow, including an iterative framework where the NMR assignment for the NOESY spectra is incomplete or ambiguous. DREAMweb is freely available for public use at http://pallab.cds.iisc.ac.in/DREAM/ and downloadable at https://github.com/niladriranjandas/DREAMv2.git.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DREAMweb: An online tool for graph-based modeling of NMR protein structure\",\"authors\":\"Niladri Ranajan Das,&nbsp;Kunal Narayan Chaudhury,&nbsp;Debnath Pal\",\"doi\":\"10.1002/pmic.202300379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The value of accurate protein structural models closely conforming to the experimental data is indisputable. DREAMweb deploys an improved DREAM algorithm, DREAMv2, that incorporates a tighter bound in the constraint set of the underlying optimization approach. This reduces the artifacts while modeling the protein structure by solving the distance-geometry problem. DREAMv2 follows a bottom-up strategy of building smaller substructures for regions with a larger concentration of experimental bounds and consolidating them before modeling the rest of the protein structure. This improves secondary structure conformance in the final models consistent with experimental data. The proposed method efficiently models regions with sparse coverage of experimental data by reducing the possibility of artifacts compared to DREAM. To balance performance and accuracy, smaller substructures (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n <mn>200</mn>\\n </mrow>\\n <annotation>$\\\\sim 200$</annotation>\\n </semantics></math> atoms) are solved in this regime, allowing faster builds for the other parts under relaxed conditions. DREAMweb is accessible as an internet resource. The improvements in results are showcased through benchmarks on 10 structures. DREAMv2 can be used in tandem with any NMR-based protein structure determination workflow, including an iterative framework where the NMR assignment for the NOESY spectra is incomplete or ambiguous. DREAMweb is freely available for public use at http://pallab.cds.iisc.ac.in/DREAM/ and downloadable at https://github.com/niladriranjandas/DREAMv2.git.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300379\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300379","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

准确的蛋白质结构模型与实验数据密切相关,其价值毋庸置疑。DREAMweb 采用了改进的 DREAM 算法 DREAMv2,在基础优化方法的约束集中加入了更严格的约束。这在通过解决距离-几何问题对蛋白质结构进行建模时减少了伪影。DREAMv2 采用了一种自下而上的策略,即在实验边界较为集中的区域建立较小的子结构,并在对蛋白质结构的其他部分进行建模之前对其进行整合。这提高了最终模型与实验数据一致的二级结构一致性。与 DREAM 相比,所提出的方法减少了出现假象的可能性,从而有效地对实验数据覆盖稀少的区域进行建模。为了在性能和准确性之间取得平衡,较小的子结构(原子)在这一机制中得到了求解,从而在宽松的条件下更快地建立其他部分的模型。DREAMweb 可作为互联网资源访问。通过对 10 个结构的基准测试,展示了结果的改进。DREAMv2 可与任何基于 NMR 的蛋白质结构确定工作流程配合使用,包括在 NOESY 图谱的 NMR 赋值不完整或不明确的情况下使用迭代框架。DREAMweb 可在 http://pallab.cds.iisc.ac.in/DREAM/ 免费供公众使用,也可在 https://github.com/niladriranjandas/DREAMv2.git 下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DREAMweb: An online tool for graph-based modeling of NMR protein structure

The value of accurate protein structural models closely conforming to the experimental data is indisputable. DREAMweb deploys an improved DREAM algorithm, DREAMv2, that incorporates a tighter bound in the constraint set of the underlying optimization approach. This reduces the artifacts while modeling the protein structure by solving the distance-geometry problem. DREAMv2 follows a bottom-up strategy of building smaller substructures for regions with a larger concentration of experimental bounds and consolidating them before modeling the rest of the protein structure. This improves secondary structure conformance in the final models consistent with experimental data. The proposed method efficiently models regions with sparse coverage of experimental data by reducing the possibility of artifacts compared to DREAM. To balance performance and accuracy, smaller substructures ( 200 $\sim 200$ atoms) are solved in this regime, allowing faster builds for the other parts under relaxed conditions. DREAMweb is accessible as an internet resource. The improvements in results are showcased through benchmarks on 10 structures. DREAMv2 can be used in tandem with any NMR-based protein structure determination workflow, including an iterative framework where the NMR assignment for the NOESY spectra is incomplete or ambiguous. DREAMweb is freely available for public use at http://pallab.cds.iisc.ac.in/DREAM/ and downloadable at https://github.com/niladriranjandas/DREAMv2.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信