{"title":"流体体积法:简要回顾","authors":"Ananthan Mohan, Gaurav Tomar","doi":"10.1007/s41745-024-00424-w","DOIUrl":null,"url":null,"abstract":"<p>Understanding and predicting multiphase flows is of great relevance due to the ubiquitous nature of such flows in both nature and in many industrial applications. Rapid development of high speed computers and problem-specific algorithms in the last 2 decades has enabled the study of multiphase flows through numerical simulations. In this paper, we give a brief overview of different methods used in direct numerical simulations of two-phase flows. In particular, we focus on the volume of fluid (VOF) method used for locating and advecting the interface. VOF method is a mesh based interface capturing method in which a scalar function called void fraction field (which is the ratio of tracked fluid to the cell volume) is advected in order to track the interface position. A geometric VOF algorithm is detailed in this work. which strikes a balance between accuracy, ease of implementation and volume conservation on a structured grid. Another challenge in two-phase flow simulations is the inclusion of surface tension forces accurately. Here, we give a brief overview of Eulerian surface tension models and detail an approach balancing computational cost, curvature estimation and imposed timestep restriction. Finally, we discuss the most recent advances in VOF methods and outline the various numerical challenges we expect to encounter.</p>","PeriodicalId":675,"journal":{"name":"Journal of the Indian Institute of Science","volume":"231 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volume of Fluid Method: A Brief Review\",\"authors\":\"Ananthan Mohan, Gaurav Tomar\",\"doi\":\"10.1007/s41745-024-00424-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding and predicting multiphase flows is of great relevance due to the ubiquitous nature of such flows in both nature and in many industrial applications. Rapid development of high speed computers and problem-specific algorithms in the last 2 decades has enabled the study of multiphase flows through numerical simulations. In this paper, we give a brief overview of different methods used in direct numerical simulations of two-phase flows. In particular, we focus on the volume of fluid (VOF) method used for locating and advecting the interface. VOF method is a mesh based interface capturing method in which a scalar function called void fraction field (which is the ratio of tracked fluid to the cell volume) is advected in order to track the interface position. A geometric VOF algorithm is detailed in this work. which strikes a balance between accuracy, ease of implementation and volume conservation on a structured grid. Another challenge in two-phase flow simulations is the inclusion of surface tension forces accurately. Here, we give a brief overview of Eulerian surface tension models and detail an approach balancing computational cost, curvature estimation and imposed timestep restriction. Finally, we discuss the most recent advances in VOF methods and outline the various numerical challenges we expect to encounter.</p>\",\"PeriodicalId\":675,\"journal\":{\"name\":\"Journal of the Indian Institute of Science\",\"volume\":\"231 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Institute of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s41745-024-00424-w\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Institute of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s41745-024-00424-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Understanding and predicting multiphase flows is of great relevance due to the ubiquitous nature of such flows in both nature and in many industrial applications. Rapid development of high speed computers and problem-specific algorithms in the last 2 decades has enabled the study of multiphase flows through numerical simulations. In this paper, we give a brief overview of different methods used in direct numerical simulations of two-phase flows. In particular, we focus on the volume of fluid (VOF) method used for locating and advecting the interface. VOF method is a mesh based interface capturing method in which a scalar function called void fraction field (which is the ratio of tracked fluid to the cell volume) is advected in order to track the interface position. A geometric VOF algorithm is detailed in this work. which strikes a balance between accuracy, ease of implementation and volume conservation on a structured grid. Another challenge in two-phase flow simulations is the inclusion of surface tension forces accurately. Here, we give a brief overview of Eulerian surface tension models and detail an approach balancing computational cost, curvature estimation and imposed timestep restriction. Finally, we discuss the most recent advances in VOF methods and outline the various numerical challenges we expect to encounter.
期刊介绍:
Started in 1914 as the second scientific journal to be published from India, the Journal of the Indian Institute of Science became a multidisciplinary reviews journal covering all disciplines of science, engineering and technology in 2007. Since then each issue is devoted to a specific topic of contemporary research interest and guest-edited by eminent researchers. Authors selected by the Guest Editor(s) and/or the Editorial Board are invited to submit their review articles; each issue is expected to serve as a state-of-the-art review of a topic from multiple viewpoints.