非交换 KP 和 mKP 方程的扩展版本以及三浦变换

Muhammad Kashif, Li Chunxia, Cui Mengyuan
{"title":"非交换 KP 和 mKP 方程的扩展版本以及三浦变换","authors":"Muhammad Kashif, Li Chunxia, Cui Mengyuan","doi":"arxiv-2404.11391","DOIUrl":null,"url":null,"abstract":"Extended versions of the noncommutative(nc) KP equation and the nc mKP\nequation are constructed in a unified way, for which two types of\nquasideterminant solutions are also presented. In commutative setting, the\nquasideterminant solutions provide the known and unknown Wronskian and Grammian\nsolutions for the bilinear KP equation with self-consistent sources and the\nbilinear mKP equation with self-consistent sources, respectively. Miura\ntransformation is established for the extended nc KP and nc mKP equations.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The extended versions of the noncommutative KP and mKP equations and Miura transformation\",\"authors\":\"Muhammad Kashif, Li Chunxia, Cui Mengyuan\",\"doi\":\"arxiv-2404.11391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended versions of the noncommutative(nc) KP equation and the nc mKP\\nequation are constructed in a unified way, for which two types of\\nquasideterminant solutions are also presented. In commutative setting, the\\nquasideterminant solutions provide the known and unknown Wronskian and Grammian\\nsolutions for the bilinear KP equation with self-consistent sources and the\\nbilinear mKP equation with self-consistent sources, respectively. Miura\\ntransformation is established for the extended nc KP and nc mKP equations.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.11391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以统一的方式构建了非交换(nc)KP方程和nc mKP方程的扩展版本,并提出了两类准定解。在交换环境下,准定解分别为具有自洽源的双线性 KP 方程和具有自洽源的双线性 mKP 方程提供了已知和未知的 Wronskian 解和 Grammians 解。为扩展 nc KP 和 nc mKP 方程建立了 Miuratransformation。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The extended versions of the noncommutative KP and mKP equations and Miura transformation
Extended versions of the noncommutative(nc) KP equation and the nc mKP equation are constructed in a unified way, for which two types of quasideterminant solutions are also presented. In commutative setting, the quasideterminant solutions provide the known and unknown Wronskian and Grammian solutions for the bilinear KP equation with self-consistent sources and the bilinear mKP equation with self-consistent sources, respectively. Miura transformation is established for the extended nc KP and nc mKP equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信