复巴纳赫空间中近似星形映射子类的修正费克特-塞戈函数

IF 1.4 3区 数学 Q1 MATHEMATICS
Qinghua Xu, Huihui Li, Taishun Liu
{"title":"复巴纳赫空间中近似星形映射子类的修正费克特-塞戈函数","authors":"Qinghua Xu,&nbsp;Huihui Li,&nbsp;Taishun Liu","doi":"10.1007/s13324-024-00910-5","DOIUrl":null,"url":null,"abstract":"<div><p>In [23], Koepf proved that for a function <span>\\(f(\\xi )=\\xi +\\sum \\limits _{m=2}^\\infty a_m\\xi ^m\\)</span> in the class of normalized close-to-convex functions in the unit disk, </p><div><div><span>$$\\begin{aligned} |a_3-\\lambda a_2^2|\\le \\left\\{ \\begin{array}{ll} 3-4\\lambda ,\\quad &amp;{} \\lambda \\in [0, \\frac{1}{3}],\\\\ \\frac{1}{3}+\\frac{4}{9\\lambda },\\quad &amp;{} \\lambda \\in [\\frac{1}{3}, \\frac{2}{3}],\\\\ 1,\\quad &amp;{} \\lambda \\in [\\frac{2}{3}, 1]. \\end{array}\\right. \\end{aligned}$$</span></div></div><p>In this paper, considering the zero of order (i.e., the mapping <span>\\(f(x)-x\\)</span> has zero of order <span>\\(k+1\\)</span> at the point <span>\\(x=0\\)</span>), we generalize the above classical result and establish the modified Fekete-Szegö functional for s subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The modified Fekete-Szegö functional for a subclass of close-to-starlike mappings in complex Banach spaces\",\"authors\":\"Qinghua Xu,&nbsp;Huihui Li,&nbsp;Taishun Liu\",\"doi\":\"10.1007/s13324-024-00910-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In [23], Koepf proved that for a function <span>\\\\(f(\\\\xi )=\\\\xi +\\\\sum \\\\limits _{m=2}^\\\\infty a_m\\\\xi ^m\\\\)</span> in the class of normalized close-to-convex functions in the unit disk, </p><div><div><span>$$\\\\begin{aligned} |a_3-\\\\lambda a_2^2|\\\\le \\\\left\\\\{ \\\\begin{array}{ll} 3-4\\\\lambda ,\\\\quad &amp;{} \\\\lambda \\\\in [0, \\\\frac{1}{3}],\\\\\\\\ \\\\frac{1}{3}+\\\\frac{4}{9\\\\lambda },\\\\quad &amp;{} \\\\lambda \\\\in [\\\\frac{1}{3}, \\\\frac{2}{3}],\\\\\\\\ 1,\\\\quad &amp;{} \\\\lambda \\\\in [\\\\frac{2}{3}, 1]. \\\\end{array}\\\\right. \\\\end{aligned}$$</span></div></div><p>In this paper, considering the zero of order (i.e., the mapping <span>\\\\(f(x)-x\\\\)</span> has zero of order <span>\\\\(k+1\\\\)</span> at the point <span>\\\\(x=0\\\\)</span>), we generalize the above classical result and establish the modified Fekete-Szegö functional for s subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00910-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00910-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在[23]中,Koepf 证明了对于单位盘中归一化近凸函数类中的函数 (f(\xi )=\xi +\sum \limits _{m=2}^\infty a_m\xi ^m\),$$\begin{aligned}。|a_3-\lambda a_2^2|le \left\{ \begin{array}{ll} 3-4\lambda ,\quad &{}\lambda \in [0, \frac{1}{3}],\\frac{1}{3}+\frac{4}{9\lambda },\quad &{}\在 [(frac{1}{3}, (frac{2}{3}],) 1,(quad &{}\lambda \in [\frac{2}{3}, 1].\end{array}\right.\在本文中,考虑到零阶(即映射 \(f(x)-x\)在点\(x=0\)处有零阶(k+1\)),我们概括了上述经典结果,并建立了定义在复巴纳赫空间单位球上的近似星形映射子类的修正费克特-塞戈函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The modified Fekete-Szegö functional for a subclass of close-to-starlike mappings in complex Banach spaces

In [23], Koepf proved that for a function \(f(\xi )=\xi +\sum \limits _{m=2}^\infty a_m\xi ^m\) in the class of normalized close-to-convex functions in the unit disk,

$$\begin{aligned} |a_3-\lambda a_2^2|\le \left\{ \begin{array}{ll} 3-4\lambda ,\quad &{} \lambda \in [0, \frac{1}{3}],\\ \frac{1}{3}+\frac{4}{9\lambda },\quad &{} \lambda \in [\frac{1}{3}, \frac{2}{3}],\\ 1,\quad &{} \lambda \in [\frac{2}{3}, 1]. \end{array}\right. \end{aligned}$$

In this paper, considering the zero of order (i.e., the mapping \(f(x)-x\) has zero of order \(k+1\) at the point \(x=0\)), we generalize the above classical result and establish the modified Fekete-Szegö functional for s subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信