建立可解释强化学习研究社区:InterpPol 研讨会

Hector Kohler, Quentin Delfosse, Paul Festor, Philippe Preux
{"title":"建立可解释强化学习研究社区:InterpPol 研讨会","authors":"Hector Kohler, Quentin Delfosse, Paul Festor, Philippe Preux","doi":"arxiv-2404.10906","DOIUrl":null,"url":null,"abstract":"Embracing the pursuit of intrinsically explainable reinforcement learning\nraises crucial questions: what distinguishes explainability from\ninterpretability? Should explainable and interpretable agents be developed\noutside of domains where transparency is imperative? What advantages do\ninterpretable policies offer over neural networks? How can we rigorously define\nand measure interpretability in policies, without user studies? What\nreinforcement learning paradigms,are the most suited to develop interpretable\nagents? Can Markov Decision Processes integrate interpretable state\nrepresentations? In addition to motivate an Interpretable RL community centered\naround the aforementioned questions, we propose the first venue dedicated to\nInterpretable RL: the InterpPol Workshop.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Research Community in Interpretable Reinforcement Learning: the InterpPol Workshop\",\"authors\":\"Hector Kohler, Quentin Delfosse, Paul Festor, Philippe Preux\",\"doi\":\"arxiv-2404.10906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embracing the pursuit of intrinsically explainable reinforcement learning\\nraises crucial questions: what distinguishes explainability from\\ninterpretability? Should explainable and interpretable agents be developed\\noutside of domains where transparency is imperative? What advantages do\\ninterpretable policies offer over neural networks? How can we rigorously define\\nand measure interpretability in policies, without user studies? What\\nreinforcement learning paradigms,are the most suited to develop interpretable\\nagents? Can Markov Decision Processes integrate interpretable state\\nrepresentations? In addition to motivate an Interpretable RL community centered\\naround the aforementioned questions, we propose the first venue dedicated to\\nInterpretable RL: the InterpPol Workshop.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.10906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.10906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

追求本质上可解释的强化学习提出了一些关键问题:可解释性与可解释性的区别是什么?是否应该在必须透明的领域之外开发可解释和可解释的代理?与神经网络相比,可解释策略有哪些优势?在没有用户研究的情况下,我们如何严格定义和衡量策略的可解释性?哪些强化学习范式最适合开发可解释代理?马尔可夫决策过程能否整合可解释的状态表示?为了推动以上述问题为中心的可解释 RL 社区的发展,我们提出了第一个专门讨论可解释 RL 的场所:InterpPol 研讨会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Research Community in Interpretable Reinforcement Learning: the InterpPol Workshop
Embracing the pursuit of intrinsically explainable reinforcement learning raises crucial questions: what distinguishes explainability from interpretability? Should explainable and interpretable agents be developed outside of domains where transparency is imperative? What advantages do interpretable policies offer over neural networks? How can we rigorously define and measure interpretability in policies, without user studies? What reinforcement learning paradigms,are the most suited to develop interpretable agents? Can Markov Decision Processes integrate interpretable state representations? In addition to motivate an Interpretable RL community centered around the aforementioned questions, we propose the first venue dedicated to Interpretable RL: the InterpPol Workshop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信