{"title":"作为魏尔-彼得森形式的复双曲形式","authors":"Xiangsheng Wang","doi":"10.1142/s0219199724500068","DOIUrl":null,"url":null,"abstract":"<p>For the moduli space of the punctured spheres, we find a new equality between two symplectic forms defined on it. Namely, by treating the elements of this moduli space as the singular Euclidean metrics on a sphere, we give an interpretation of the complex hyperbolic form, i.e. the Kähler form of the complex hyperbolic structure on the moduli space, as a kind of Weil–Petersson form.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complex hyperbolic form as a Weil–Petersson form\",\"authors\":\"Xiangsheng Wang\",\"doi\":\"10.1142/s0219199724500068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the moduli space of the punctured spheres, we find a new equality between two symplectic forms defined on it. Namely, by treating the elements of this moduli space as the singular Euclidean metrics on a sphere, we give an interpretation of the complex hyperbolic form, i.e. the Kähler form of the complex hyperbolic structure on the moduli space, as a kind of Weil–Petersson form.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500068\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500068","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The complex hyperbolic form as a Weil–Petersson form
For the moduli space of the punctured spheres, we find a new equality between two symplectic forms defined on it. Namely, by treating the elements of this moduli space as the singular Euclidean metrics on a sphere, we give an interpretation of the complex hyperbolic form, i.e. the Kähler form of the complex hyperbolic structure on the moduli space, as a kind of Weil–Petersson form.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.