粘性非线性波方程的规范膨胀

Pierre de Roubin, Mamoru Okamoto
{"title":"粘性非线性波方程的规范膨胀","authors":"Pierre de Roubin, Mamoru Okamoto","doi":"10.1007/s00030-024-00944-5","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study the ill-posedness of the viscous nonlinear wave equation for any polynomial nonlinearity in negative Sobolev spaces. In particular, we prove a norm inflation result above the scaling critical regularity in some cases. We also show failure of <span>\\(C^k\\)</span>-continuity, for <i>k</i> the power of the nonlinearity, up to some regularity threshold.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm inflation for the viscous nonlinear wave equation\",\"authors\":\"Pierre de Roubin, Mamoru Okamoto\",\"doi\":\"10.1007/s00030-024-00944-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study the ill-posedness of the viscous nonlinear wave equation for any polynomial nonlinearity in negative Sobolev spaces. In particular, we prove a norm inflation result above the scaling critical regularity in some cases. We also show failure of <span>\\\\(C^k\\\\)</span>-continuity, for <i>k</i> the power of the nonlinearity, up to some regularity threshold.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00944-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00944-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们研究了粘性非线性波方程在负 Sobolev 空间中对任意多项式非线性的拟合不良性。特别是,我们证明了在某些情况下高于缩放临界正则性的规范膨胀结果。我们还证明了在某些正则性临界值以内,对于非线性的幂 k,\(C^k\)-连续性的失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Norm inflation for the viscous nonlinear wave equation

In this article, we study the ill-posedness of the viscous nonlinear wave equation for any polynomial nonlinearity in negative Sobolev spaces. In particular, we prove a norm inflation result above the scaling critical regularity in some cases. We also show failure of \(C^k\)-continuity, for k the power of the nonlinearity, up to some regularity threshold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信