用于双时相遥感图像中建筑物变化检测的差异感知连体网络

Yansheng Li, Xinwei Li, Wei Chen, Yongjun Zhang
{"title":"用于双时相遥感图像中建筑物变化检测的差异感知连体网络","authors":"Yansheng Li, Xinwei Li, Wei Chen, Yongjun Zhang","doi":"10.1111/phor.12495","DOIUrl":null,"url":null,"abstract":"Building change detection has various applications, such as urban management and disaster assessment. Along with the exponential growth of remote sensing data and computing power, an increasing number of deep‐learning‐based remote sensing building change detection methods have been proposed in recent years. Objectively, the overwhelming majority of existing methods can perfectly deal with the change detection of low‐rise buildings. By contrast, high‐rise buildings often present a large disparity in multitemporal high‐resolution remote sensing images, which degrades the performance of existing methods dramatically. To alleviate this problem, we propose a disparity‐aware Siamese network for detecting building changes in bi‐temporal high‐resolution remote sensing images. The proposed network utilises a cycle‐alignment module to address the disparity problem at both the image and feature levels. A multi‐task learning framework with joint semantic segmentation and change detection loss is used to train the entire deep network, including the cycle‐alignment module in an end‐to‐end manner. Extensive experiments on three publicly open building change detection datasets demonstrate that our method achieves significant improvements on datasets with severe building disparity and state‐of‐the‐art performance on datasets with minimal building disparity simultaneously.","PeriodicalId":22881,"journal":{"name":"The Photogrammetric Record","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A disparity‐aware Siamese network for building change detection in bi‐temporal remote sensing images\",\"authors\":\"Yansheng Li, Xinwei Li, Wei Chen, Yongjun Zhang\",\"doi\":\"10.1111/phor.12495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building change detection has various applications, such as urban management and disaster assessment. Along with the exponential growth of remote sensing data and computing power, an increasing number of deep‐learning‐based remote sensing building change detection methods have been proposed in recent years. Objectively, the overwhelming majority of existing methods can perfectly deal with the change detection of low‐rise buildings. By contrast, high‐rise buildings often present a large disparity in multitemporal high‐resolution remote sensing images, which degrades the performance of existing methods dramatically. To alleviate this problem, we propose a disparity‐aware Siamese network for detecting building changes in bi‐temporal high‐resolution remote sensing images. The proposed network utilises a cycle‐alignment module to address the disparity problem at both the image and feature levels. A multi‐task learning framework with joint semantic segmentation and change detection loss is used to train the entire deep network, including the cycle‐alignment module in an end‐to‐end manner. Extensive experiments on three publicly open building change detection datasets demonstrate that our method achieves significant improvements on datasets with severe building disparity and state‐of‐the‐art performance on datasets with minimal building disparity simultaneously.\",\"PeriodicalId\":22881,\"journal\":{\"name\":\"The Photogrammetric Record\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Photogrammetric Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/phor.12495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Photogrammetric Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/phor.12495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建筑物变化检测有多种应用,如城市管理和灾害评估。随着遥感数据和计算能力的指数级增长,近年来提出了越来越多基于深度学习的遥感建筑物变化检测方法。客观地说,绝大多数现有方法都能完美地处理低层建筑的变化检测。相比之下,高层建筑往往在多时高分辨率遥感图像中呈现出较大的差异,这就大大降低了现有方法的性能。为了缓解这一问题,我们提出了一种差异感知连体网络,用于检测双时相高分辨率遥感图像中建筑物的变化。该网络利用循环对齐模块来解决图像和特征层面的差异问题。多任务学习框架与语义分割和变化检测损失相结合,用于训练整个深度网络,包括以端到端的方式训练循环对齐模块。在三个公开开放的建筑物变化检测数据集上进行的广泛实验表明,我们的方法在建筑物差异严重的数据集上取得了显著的改进,同时在建筑物差异极小的数据集上取得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A disparity‐aware Siamese network for building change detection in bi‐temporal remote sensing images
Building change detection has various applications, such as urban management and disaster assessment. Along with the exponential growth of remote sensing data and computing power, an increasing number of deep‐learning‐based remote sensing building change detection methods have been proposed in recent years. Objectively, the overwhelming majority of existing methods can perfectly deal with the change detection of low‐rise buildings. By contrast, high‐rise buildings often present a large disparity in multitemporal high‐resolution remote sensing images, which degrades the performance of existing methods dramatically. To alleviate this problem, we propose a disparity‐aware Siamese network for detecting building changes in bi‐temporal high‐resolution remote sensing images. The proposed network utilises a cycle‐alignment module to address the disparity problem at both the image and feature levels. A multi‐task learning framework with joint semantic segmentation and change detection loss is used to train the entire deep network, including the cycle‐alignment module in an end‐to‐end manner. Extensive experiments on three publicly open building change detection datasets demonstrate that our method achieves significant improvements on datasets with severe building disparity and state‐of‐the‐art performance on datasets with minimal building disparity simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信