通过多项式混沌扩展张量计算统计矩

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rafael Ballester-Ripoll
{"title":"通过多项式混沌扩展张量计算统计矩","authors":"Rafael Ballester-Ripoll","doi":"10.1137/23m155428x","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 289-308, June 2024. <br/> Abstract. We present an algorithm for estimating higher-order statistical moments of multidimensional functions expressed as polynomial chaos expansions (PCE). The algorithm starts by decomposing the PCE into a low-rank tensor network using a combination of tensor-train and Tucker decompositions. It then efficiently calculates the desired moments in the compressed tensor domain, leveraging the highly linear structure of the network. Using three benchmark engineering functions, we demonstrate that our approach offers substantial speed improvements over alternative algorithms while maintaining a minimal and adjustable approximation error. Additionally, our method can calculate moments even when the input variable distribution is altered, incurring only a small additional computational cost and without requiring retraining of the regressor.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Statistical Moments Via Tensorization of Polynomial Chaos Expansions\",\"authors\":\"Rafael Ballester-Ripoll\",\"doi\":\"10.1137/23m155428x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 289-308, June 2024. <br/> Abstract. We present an algorithm for estimating higher-order statistical moments of multidimensional functions expressed as polynomial chaos expansions (PCE). The algorithm starts by decomposing the PCE into a low-rank tensor network using a combination of tensor-train and Tucker decompositions. It then efficiently calculates the desired moments in the compressed tensor domain, leveraging the highly linear structure of the network. Using three benchmark engineering functions, we demonstrate that our approach offers substantial speed improvements over alternative algorithms while maintaining a minimal and adjustable approximation error. Additionally, our method can calculate moments even when the input variable distribution is altered, incurring only a small additional computational cost and without requiring retraining of the regressor.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m155428x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m155428x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA 不确定性量化期刊》第 12 卷第 2 期第 289-308 页,2024 年 6 月。 摘要。我们提出了一种估计以多项式混沌展开(PCE)表示的多维函数的高阶统计矩的算法。该算法首先使用张量-训练和塔克分解相结合的方法,将 PCE 分解为低秩张量网络。然后,该算法利用网络的高度线性结构,在压缩张量域中高效计算所需的矩。我们利用三个基准工程函数证明,与其他算法相比,我们的方法大大提高了速度,同时保持了最小的可调节近似误差。此外,即使输入变量的分布发生变化,我们的方法也能计算矩,只需少量额外计算成本,且无需重新训练回归器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Statistical Moments Via Tensorization of Polynomial Chaos Expansions
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 289-308, June 2024.
Abstract. We present an algorithm for estimating higher-order statistical moments of multidimensional functions expressed as polynomial chaos expansions (PCE). The algorithm starts by decomposing the PCE into a low-rank tensor network using a combination of tensor-train and Tucker decompositions. It then efficiently calculates the desired moments in the compressed tensor domain, leveraging the highly linear structure of the network. Using three benchmark engineering functions, we demonstrate that our approach offers substantial speed improvements over alternative algorithms while maintaining a minimal and adjustable approximation error. Additionally, our method can calculate moments even when the input variable distribution is altered, incurring only a small additional computational cost and without requiring retraining of the regressor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信