基于 BSDE 的随机控制,在动态传染模型中实现最优再保险

Claudia Ceci, Alessandra Cretarola
{"title":"基于 BSDE 的随机控制,在动态传染模型中实现最优再保险","authors":"Claudia Ceci, Alessandra Cretarola","doi":"arxiv-2404.11482","DOIUrl":null,"url":null,"abstract":"We investigate the optimal reinsurance problem in the risk model with jump\nclustering features introduced in [7]. This modeling framework is inspired by\nthe concept initially proposed in [15], combining Hawkes and Cox processes with\nshot noise intensity models. Specifically, these processes describe\nself-exciting and externally excited jumps in the claim arrival intensity,\nrespectively. The insurer aims to maximize the expected exponential utility of\nterminal wealth for general reinsurance contracts and reinsurance premiums. We\ndiscuss two different methodologies: the classical stochastic control approach\nbased on the Hamilton-Jacobi-Bellman (HJB) equation and a backward stochastic\ndifferential equation (BSDE) approach. In a Markovian setting, differently from\nthe classical HJB-approach, the BSDE method enables us to solve the problem\nwithout imposing any requirements for regularity on the associated value\nfunction. We provide a Verification Theorem in terms of a suitable BSDE driven\nby a two-dimensional marked point process and we prove an existence result\nrelaying on the theory developed in [27] for stochastic Lipschitz generators.\nAfter discussing the optimal strategy for general reinsurance contracts and\nreinsurance premiums, we provide more explicit results in some relevant cases.\nFinally, we provide comparison results that highlight the heightened risk\nstemming from the self-exciting component in contrast to the externally-excited\ncounterpart and discuss the monotonicity property of the value function.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BSDE-based stochastic control for optimal reinsurance in a dynamic contagion model\",\"authors\":\"Claudia Ceci, Alessandra Cretarola\",\"doi\":\"arxiv-2404.11482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the optimal reinsurance problem in the risk model with jump\\nclustering features introduced in [7]. This modeling framework is inspired by\\nthe concept initially proposed in [15], combining Hawkes and Cox processes with\\nshot noise intensity models. Specifically, these processes describe\\nself-exciting and externally excited jumps in the claim arrival intensity,\\nrespectively. The insurer aims to maximize the expected exponential utility of\\nterminal wealth for general reinsurance contracts and reinsurance premiums. We\\ndiscuss two different methodologies: the classical stochastic control approach\\nbased on the Hamilton-Jacobi-Bellman (HJB) equation and a backward stochastic\\ndifferential equation (BSDE) approach. In a Markovian setting, differently from\\nthe classical HJB-approach, the BSDE method enables us to solve the problem\\nwithout imposing any requirements for regularity on the associated value\\nfunction. We provide a Verification Theorem in terms of a suitable BSDE driven\\nby a two-dimensional marked point process and we prove an existence result\\nrelaying on the theory developed in [27] for stochastic Lipschitz generators.\\nAfter discussing the optimal strategy for general reinsurance contracts and\\nreinsurance premiums, we provide more explicit results in some relevant cases.\\nFinally, we provide comparison results that highlight the heightened risk\\nstemming from the self-exciting component in contrast to the externally-excited\\ncounterpart and discuss the monotonicity property of the value function.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.11482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 [7] 中引入的具有跳跃聚类特征的风险模型中的最优再保险问题。这一建模框架受最初在 [15] 中提出的概念启发,将霍克斯和考克斯过程与跳跃噪声强度模型相结合。具体来说,这些过程分别描述了索赔到达强度中的自激跳变和外激跳变。保险人的目标是最大化一般再保险合同和再保险费的最终财富的预期指数效用。我们讨论了两种不同的方法:基于汉密尔顿-雅各比-贝尔曼(HJB)方程的经典随机控制方法和后向随机微分方程(BSDE)方法。在马尔可夫环境中,与经典的 HJB 方法不同的是,BSDE 方法使我们能够在不对相关值函数施加任何正则性要求的情况下解决问题。在讨论了一般再保险合同和再保险费的最优策略后,我们提供了一些相关情况下更明确的结果。最后,我们提供了一些比较结果,突出了自激部分与外激部分相比所产生的更高风险,并讨论了价值函数的单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BSDE-based stochastic control for optimal reinsurance in a dynamic contagion model
We investigate the optimal reinsurance problem in the risk model with jump clustering features introduced in [7]. This modeling framework is inspired by the concept initially proposed in [15], combining Hawkes and Cox processes with shot noise intensity models. Specifically, these processes describe self-exciting and externally excited jumps in the claim arrival intensity, respectively. The insurer aims to maximize the expected exponential utility of terminal wealth for general reinsurance contracts and reinsurance premiums. We discuss two different methodologies: the classical stochastic control approach based on the Hamilton-Jacobi-Bellman (HJB) equation and a backward stochastic differential equation (BSDE) approach. In a Markovian setting, differently from the classical HJB-approach, the BSDE method enables us to solve the problem without imposing any requirements for regularity on the associated value function. We provide a Verification Theorem in terms of a suitable BSDE driven by a two-dimensional marked point process and we prove an existence result relaying on the theory developed in [27] for stochastic Lipschitz generators. After discussing the optimal strategy for general reinsurance contracts and reinsurance premiums, we provide more explicit results in some relevant cases. Finally, we provide comparison results that highlight the heightened risk stemming from the self-exciting component in contrast to the externally-excited counterpart and discuss the monotonicity property of the value function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信