锌指蛋白 Moc3 发挥转录激活剂的功能,促进裂殖酵母中 RNAi- 依赖性组成型异染色质的建立

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miyuki Mori, Michiaki Sato, Shinya Takahata, Takuya Kajitani, Yota Murakami
{"title":"锌指蛋白 Moc3 发挥转录激活剂的功能,促进裂殖酵母中 RNAi- 依赖性组成型异染色质的建立","authors":"Miyuki Mori,&nbsp;Michiaki Sato,&nbsp;Shinya Takahata,&nbsp;Takuya Kajitani,&nbsp;Yota Murakami","doi":"10.1111/gtc.13116","DOIUrl":null,"url":null,"abstract":"<p>In fission yeast, <i>Schizosaccharomyces pombe,</i> constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called <i>dg</i> and <i>dh</i>, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at <i>dg/dh</i>. Bi-directional transcription at <i>dg/dh</i> induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of <i>dg/dh</i> transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes <i>dh</i> and activates <i>dh</i>-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the <i>dh</i>-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent <i>dh</i>-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A zinc-finger protein Moc3 functions as a transcription activator to promote RNAi-dependent constitutive heterochromatin establishment in fission yeast\",\"authors\":\"Miyuki Mori,&nbsp;Michiaki Sato,&nbsp;Shinya Takahata,&nbsp;Takuya Kajitani,&nbsp;Yota Murakami\",\"doi\":\"10.1111/gtc.13116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In fission yeast, <i>Schizosaccharomyces pombe,</i> constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called <i>dg</i> and <i>dh</i>, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at <i>dg/dh</i>. Bi-directional transcription at <i>dg/dh</i> induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of <i>dg/dh</i> transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes <i>dh</i> and activates <i>dh</i>-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the <i>dh</i>-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent <i>dh</i>-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13116\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在裂殖酵母(Schizosaccharomyces pombe)中,由组蛋白 H3 赖氨酸 9(H3K9me)甲基化及其结合蛋白 Swi6/HP1 确定的组成型异染色质定位于端粒、中心粒和交配型位点。这些基因座包含称为 dg 和 dh 的 DNA 序列,依赖 RNA 干扰(RNAi)的系统在 dg/dh 处建立并维持异染色质。RNA 聚合酶 II 诱导的 dg/dh 双向转录对 RNAi 依赖性异染色质的形成至关重要,因为转录的 RNA 为 siRNA 的合成提供了底物,并为 RNAi 因子的组装提供了平台。然而,异染色质形成过程中 dg/dh 转录的调控因子尚不清楚。在这里,我们发现当异染色质结构或异染色质依赖性沉默受到破坏时,锌指蛋白Moc3会定位dh,并以其锌指依赖性方式激活dh-前向转录。然而,Moc3 不会定位在正常的异染色质上,也不会激活 dh-前向转录。值得注意的是,Moc3的缺失会导致异染色质的建立受阻,这表明依赖于Moc3的dh-前向转录对于RNAi依赖性异染色质的建立至关重要。因此,Moc3是诱导RNAi建立异染色质的转录激活因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A zinc-finger protein Moc3 functions as a transcription activator to promote RNAi-dependent constitutive heterochromatin establishment in fission yeast

A zinc-finger protein Moc3 functions as a transcription activator to promote RNAi-dependent constitutive heterochromatin establishment in fission yeast

In fission yeast, Schizosaccharomyces pombe, constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called dg and dh, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at dg/dh. Bi-directional transcription at dg/dh induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of dg/dh transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes dh and activates dh-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the dh-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent dh-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信