{"title":"几何计数过程驱动的 $$\\mathbb {R}^3$$ 循环随机运动","authors":"Antonella Iuliano, Gabriella Verasani","doi":"10.1007/s11009-024-10083-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the random motion of a particle that moves with constant velocity in <span>\\(\\mathbb {R}^3\\)</span>. The particle can move along four different directions that are attained cyclically. It follows that the support of the stochastic process describing the particle’s position at a fixed time is a tetrahedron. We assume that the sequence of sojourn times along each direction follows a Geometric Counting Process (GCP). When the initial condition is fixed, we obtain the explicit form of the probability law of the process, for the particle’s position. We also investigate the limiting behavior of the related probability density when the intensities of the four GCPs tend to infinity. Furthermore, we show that the process does not admit a stationary density. Finally, we introduce the first-passage-time problem for the first component of the process through a constant positive boundary providing the bases for future developments.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cyclic Random Motion in $$\\\\mathbb {R}^3$$ Driven by Geometric Counting Processes\",\"authors\":\"Antonella Iuliano, Gabriella Verasani\",\"doi\":\"10.1007/s11009-024-10083-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the random motion of a particle that moves with constant velocity in <span>\\\\(\\\\mathbb {R}^3\\\\)</span>. The particle can move along four different directions that are attained cyclically. It follows that the support of the stochastic process describing the particle’s position at a fixed time is a tetrahedron. We assume that the sequence of sojourn times along each direction follows a Geometric Counting Process (GCP). When the initial condition is fixed, we obtain the explicit form of the probability law of the process, for the particle’s position. We also investigate the limiting behavior of the related probability density when the intensities of the four GCPs tend to infinity. Furthermore, we show that the process does not admit a stationary density. Finally, we introduce the first-passage-time problem for the first component of the process through a constant positive boundary providing the bases for future developments.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10083-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10083-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Cyclic Random Motion in $$\mathbb {R}^3$$ Driven by Geometric Counting Processes
We consider the random motion of a particle that moves with constant velocity in \(\mathbb {R}^3\). The particle can move along four different directions that are attained cyclically. It follows that the support of the stochastic process describing the particle’s position at a fixed time is a tetrahedron. We assume that the sequence of sojourn times along each direction follows a Geometric Counting Process (GCP). When the initial condition is fixed, we obtain the explicit form of the probability law of the process, for the particle’s position. We also investigate the limiting behavior of the related probability density when the intensities of the four GCPs tend to infinity. Furthermore, we show that the process does not admit a stationary density. Finally, we introduce the first-passage-time problem for the first component of the process through a constant positive boundary providing the bases for future developments.
期刊介绍:
Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics.
The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests:
-Algorithms-
Approximations-
Asymptotic Approximations & Expansions-
Combinatorial & Geometric Probability-
Communication Networks-
Extreme Value Theory-
Finance-
Image Analysis-
Inequalities-
Information Theory-
Mathematical Physics-
Molecular Biology-
Monte Carlo Methods-
Order Statistics-
Queuing Theory-
Reliability Theory-
Stochastic Processes