与韦恩斯坦变换相关的同符号类伪微分算子

IF 0.8 3区 数学 Q2 MATHEMATICS
Santosh Kumar Upadhyay, Mohd Sartaj
{"title":"与韦恩斯坦变换相关的同符号类伪微分算子","authors":"Santosh Kumar Upadhyay,&nbsp;Mohd Sartaj","doi":"10.1007/s10114-024-2405-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, pseudo-differential operators with homogeneous symbol classes associated with the Weinstein transform are introduced. The boundedness of pseudo-differential operators and commutator between two pseudo-differential operators on <i>ℌ</i><span>\n <sup><i>r</i></sup><sub><i>α</i>,2</sub>\n \n </span> are proven with the help of the Weinstein transform technique.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-Differential Operators of Homogeneous Symbol Class Associated with the Weinstein Transform\",\"authors\":\"Santosh Kumar Upadhyay,&nbsp;Mohd Sartaj\",\"doi\":\"10.1007/s10114-024-2405-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, pseudo-differential operators with homogeneous symbol classes associated with the Weinstein transform are introduced. The boundedness of pseudo-differential operators and commutator between two pseudo-differential operators on <i>ℌ</i><span>\\n <sup><i>r</i></sup><sub><i>α</i>,2</sub>\\n \\n </span> are proven with the help of the Weinstein transform technique.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2405-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2405-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了与韦恩斯坦变换相关的具有同质符号类的伪微分算子。借助韦恩斯坦变换技术,证明了ℌrα,2 上伪微分算子的有界性和两个伪微分算子之间的换元器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-Differential Operators of Homogeneous Symbol Class Associated with the Weinstein Transform

In this paper, pseudo-differential operators with homogeneous symbol classes associated with the Weinstein transform are introduced. The boundedness of pseudo-differential operators and commutator between two pseudo-differential operators on rα,2 are proven with the help of the Weinstein transform technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信