{"title":"波诺-梅尔文-兰姆达解中的相对论自旋-0 达芬-凯默-佩蒂奥方程","authors":"Faizuddin Ahmed, Abdelmalek Bouzenada","doi":"10.1142/s0217751x24500325","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we conduct a comprehensive exploration of the relativistic quantum dynamics of spin-0 scalar particles, as described by the Duffin–Kemmer–Petiau (DKP) equation, within the framework of a magnetic space-time. Our focus is on the Bonnor–Melvin–Lambda (BML) solution, a four-dimensional magnetic universe characterized by a magnetic field that varies with axial distance. To initiate this investigation, we derive the radial equation using a suitable wave function ansatz and subsequently employ special functions to solve it. Furthermore, we extend our analysis to include Duffin–Kemmer–Petiau oscillator fields within the same BML space-time background. We derive the corresponding radial equation and solve it using special functions. Significantly, our results show that the geometry’s topology and the cosmological constant (both are related to the magnetic field strength) influence the eigenvalue solution of spin-0 DKP fields and DKP-oscillator fields, leading to substantial modifications in the overall outcomes.</p>","PeriodicalId":50309,"journal":{"name":"International Journal of Modern Physics a","volume":"62 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic spin-0 Duffin–Kemmer–Petiau equation in Bonnor–Melvin–Lambda solution\",\"authors\":\"Faizuddin Ahmed, Abdelmalek Bouzenada\",\"doi\":\"10.1142/s0217751x24500325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we conduct a comprehensive exploration of the relativistic quantum dynamics of spin-0 scalar particles, as described by the Duffin–Kemmer–Petiau (DKP) equation, within the framework of a magnetic space-time. Our focus is on the Bonnor–Melvin–Lambda (BML) solution, a four-dimensional magnetic universe characterized by a magnetic field that varies with axial distance. To initiate this investigation, we derive the radial equation using a suitable wave function ansatz and subsequently employ special functions to solve it. Furthermore, we extend our analysis to include Duffin–Kemmer–Petiau oscillator fields within the same BML space-time background. We derive the corresponding radial equation and solve it using special functions. Significantly, our results show that the geometry’s topology and the cosmological constant (both are related to the magnetic field strength) influence the eigenvalue solution of spin-0 DKP fields and DKP-oscillator fields, leading to substantial modifications in the overall outcomes.</p>\",\"PeriodicalId\":50309,\"journal\":{\"name\":\"International Journal of Modern Physics a\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics a\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217751x24500325\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217751x24500325","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Relativistic spin-0 Duffin–Kemmer–Petiau equation in Bonnor–Melvin–Lambda solution
In this paper, we conduct a comprehensive exploration of the relativistic quantum dynamics of spin-0 scalar particles, as described by the Duffin–Kemmer–Petiau (DKP) equation, within the framework of a magnetic space-time. Our focus is on the Bonnor–Melvin–Lambda (BML) solution, a four-dimensional magnetic universe characterized by a magnetic field that varies with axial distance. To initiate this investigation, we derive the radial equation using a suitable wave function ansatz and subsequently employ special functions to solve it. Furthermore, we extend our analysis to include Duffin–Kemmer–Petiau oscillator fields within the same BML space-time background. We derive the corresponding radial equation and solve it using special functions. Significantly, our results show that the geometry’s topology and the cosmological constant (both are related to the magnetic field strength) influence the eigenvalue solution of spin-0 DKP fields and DKP-oscillator fields, leading to substantial modifications in the overall outcomes.
期刊介绍:
Started in 1986, IJMPA has gained international repute as a high-quality scientific journal. It consists of important review articles and original papers covering the latest research developments in Particles and Fields, and selected topics intersecting with Gravitation and Cosmology. The journal also features articles of long-standing value and importance which can be vital to research into new unexplored areas.