波诺-梅尔文-兰姆达解中的相对论自旋-0 达芬-凯默-佩蒂奥方程

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, NUCLEAR
Faizuddin Ahmed, Abdelmalek Bouzenada
{"title":"波诺-梅尔文-兰姆达解中的相对论自旋-0 达芬-凯默-佩蒂奥方程","authors":"Faizuddin Ahmed, Abdelmalek Bouzenada","doi":"10.1142/s0217751x24500325","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we conduct a comprehensive exploration of the relativistic quantum dynamics of spin-0 scalar particles, as described by the Duffin–Kemmer–Petiau (DKP) equation, within the framework of a magnetic space-time. Our focus is on the Bonnor–Melvin–Lambda (BML) solution, a four-dimensional magnetic universe characterized by a magnetic field that varies with axial distance. To initiate this investigation, we derive the radial equation using a suitable wave function ansatz and subsequently employ special functions to solve it. Furthermore, we extend our analysis to include Duffin–Kemmer–Petiau oscillator fields within the same BML space-time background. We derive the corresponding radial equation and solve it using special functions. Significantly, our results show that the geometry’s topology and the cosmological constant (both are related to the magnetic field strength) influence the eigenvalue solution of spin-0 DKP fields and DKP-oscillator fields, leading to substantial modifications in the overall outcomes.</p>","PeriodicalId":50309,"journal":{"name":"International Journal of Modern Physics a","volume":"62 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic spin-0 Duffin–Kemmer–Petiau equation in Bonnor–Melvin–Lambda solution\",\"authors\":\"Faizuddin Ahmed, Abdelmalek Bouzenada\",\"doi\":\"10.1142/s0217751x24500325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we conduct a comprehensive exploration of the relativistic quantum dynamics of spin-0 scalar particles, as described by the Duffin–Kemmer–Petiau (DKP) equation, within the framework of a magnetic space-time. Our focus is on the Bonnor–Melvin–Lambda (BML) solution, a four-dimensional magnetic universe characterized by a magnetic field that varies with axial distance. To initiate this investigation, we derive the radial equation using a suitable wave function ansatz and subsequently employ special functions to solve it. Furthermore, we extend our analysis to include Duffin–Kemmer–Petiau oscillator fields within the same BML space-time background. We derive the corresponding radial equation and solve it using special functions. Significantly, our results show that the geometry’s topology and the cosmological constant (both are related to the magnetic field strength) influence the eigenvalue solution of spin-0 DKP fields and DKP-oscillator fields, leading to substantial modifications in the overall outcomes.</p>\",\"PeriodicalId\":50309,\"journal\":{\"name\":\"International Journal of Modern Physics a\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics a\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217751x24500325\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217751x24500325","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在磁性时空的框架内,对自旋-0 标量粒子的相对论量子动力学进行了全面探索,正如达芬-凯默-佩蒂奥(DKP)方程所描述的那样。我们的研究重点是波诺-梅尔文-兰姆达(BML)方案,这是一个以磁场随轴向距离变化为特征的四维磁宇宙。为了启动这项研究,我们使用合适的波函数解析推导出径向方程,随后使用特殊函数求解。此外,我们还将分析扩展到同一 BML 时空背景下的达芬-凯末尔-佩蒂奥振荡器场。我们推导出相应的径向方程,并用特殊函数求解。重要的是,我们的结果表明,几何拓扑和宇宙学常数(两者都与磁场强度有关)会影响自旋-0 DKP 场和 DKP 振荡器场的特征值求解,从而导致整体结果发生重大变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativistic spin-0 Duffin–Kemmer–Petiau equation in Bonnor–Melvin–Lambda solution

In this paper, we conduct a comprehensive exploration of the relativistic quantum dynamics of spin-0 scalar particles, as described by the Duffin–Kemmer–Petiau (DKP) equation, within the framework of a magnetic space-time. Our focus is on the Bonnor–Melvin–Lambda (BML) solution, a four-dimensional magnetic universe characterized by a magnetic field that varies with axial distance. To initiate this investigation, we derive the radial equation using a suitable wave function ansatz and subsequently employ special functions to solve it. Furthermore, we extend our analysis to include Duffin–Kemmer–Petiau oscillator fields within the same BML space-time background. We derive the corresponding radial equation and solve it using special functions. Significantly, our results show that the geometry’s topology and the cosmological constant (both are related to the magnetic field strength) influence the eigenvalue solution of spin-0 DKP fields and DKP-oscillator fields, leading to substantial modifications in the overall outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics a
International Journal of Modern Physics a 物理-物理:核物理
CiteScore
3.00
自引率
12.50%
发文量
283
审稿时长
3 months
期刊介绍: Started in 1986, IJMPA has gained international repute as a high-quality scientific journal. It consists of important review articles and original papers covering the latest research developments in Particles and Fields, and selected topics intersecting with Gravitation and Cosmology. The journal also features articles of long-standing value and importance which can be vital to research into new unexplored areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信