吸引子不是代数的

IF 1.3 1区 数学 Q1 MATHEMATICS
Yeuk Hay Joshua Lam, Arnav Tripathy
{"title":"吸引子不是代数的","authors":"Yeuk Hay Joshua Lam, Arnav Tripathy","doi":"10.1112/s0010437x24007036","DOIUrl":null,"url":null,"abstract":"<p>The attractor conjecture for Calabi–Yau moduli spaces predicts the algebraicity of the moduli values of certain isolated points picked out by Hodge-theoretic conditions. Using tools from transcendence theory, we provide a family of counterexamples to the attractor conjecture in almost all odd dimensions conditional on a specific case of the Zilber–Pink conjecture in unlikely intersection theory; these Calabi–Yau manifolds were first studied by Dolgachev. We also give constructions of new families of Calabi–Yau varieties, analogous to the mirror quintic family, with all middle Hodge numbers equal to one, which would also give counterexamples to the attractor conjecture.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"14 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attractors are not algebraic\",\"authors\":\"Yeuk Hay Joshua Lam, Arnav Tripathy\",\"doi\":\"10.1112/s0010437x24007036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The attractor conjecture for Calabi–Yau moduli spaces predicts the algebraicity of the moduli values of certain isolated points picked out by Hodge-theoretic conditions. Using tools from transcendence theory, we provide a family of counterexamples to the attractor conjecture in almost all odd dimensions conditional on a specific case of the Zilber–Pink conjecture in unlikely intersection theory; these Calabi–Yau manifolds were first studied by Dolgachev. We also give constructions of new families of Calabi–Yau varieties, analogous to the mirror quintic family, with all middle Hodge numbers equal to one, which would also give counterexamples to the attractor conjecture.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007036\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007036","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Calabi-Yau 模空间的吸引子猜想预言了霍奇理论条件选出的某些孤立点的模值的代数性。利用超越理论的工具,我们提供了在几乎所有奇数维度上的吸引子猜想的反例族,其条件是不可能交集理论中的齐尔伯-平克猜想的一种特殊情况;这些卡拉比-尤流形是多尔加乔夫首先研究的。我们还给出了新的卡拉比优流形族的构造,类似于镜像五元族,所有中间霍奇数都等于一,这也是吸引子猜想的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attractors are not algebraic

The attractor conjecture for Calabi–Yau moduli spaces predicts the algebraicity of the moduli values of certain isolated points picked out by Hodge-theoretic conditions. Using tools from transcendence theory, we provide a family of counterexamples to the attractor conjecture in almost all odd dimensions conditional on a specific case of the Zilber–Pink conjecture in unlikely intersection theory; these Calabi–Yau manifolds were first studied by Dolgachev. We also give constructions of new families of Calabi–Yau varieties, analogous to the mirror quintic family, with all middle Hodge numbers equal to one, which would also give counterexamples to the attractor conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信