{"title":"随机坐标近端梯度法在不可分割复合优化中的效率","authors":"Ion Necoara, Flavia Chorobura","doi":"10.1287/moor.2023.0044","DOIUrl":null,"url":null,"abstract":"This paper deals with composite optimization problems having the objective function formed as the sum of two terms; one has a Lipschitz continuous gradient along random subspaces and may be nonconvex, and the second term is simple and differentiable but possibly nonconvex and nonseparable. Under these settings, we design a stochastic coordinate proximal gradient method that takes into account the nonseparable composite form of the objective function. This algorithm achieves scalability by constructing at each iteration a local approximation model of the whole nonseparable objective function along a random subspace with user-determined dimension. We outline efficient techniques for selecting the random subspace, yielding an implementation that has low cost per iteration, also achieving fast convergence rates. We present a probabilistic worst case complexity analysis for our stochastic coordinate proximal gradient method in convex and nonconvex settings; in particular, we prove high-probability bounds on the number of iterations before a given optimality is achieved. Extensive numerical results also confirm the efficiency of our algorithm.Funding: This work was supported by Norway Grants 2014-2021 [Grant ELO-Hyp 24/2020]; Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii [Grants PN-III-P4-PCE-2021-0720, L2O-MOC, nr 70/2022]; and the ITN-ETN project TraDE-OPT funded by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement [Grant 861137].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"63 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency of Stochastic Coordinate Proximal Gradient Methods on Nonseparable Composite Optimization\",\"authors\":\"Ion Necoara, Flavia Chorobura\",\"doi\":\"10.1287/moor.2023.0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with composite optimization problems having the objective function formed as the sum of two terms; one has a Lipschitz continuous gradient along random subspaces and may be nonconvex, and the second term is simple and differentiable but possibly nonconvex and nonseparable. Under these settings, we design a stochastic coordinate proximal gradient method that takes into account the nonseparable composite form of the objective function. This algorithm achieves scalability by constructing at each iteration a local approximation model of the whole nonseparable objective function along a random subspace with user-determined dimension. We outline efficient techniques for selecting the random subspace, yielding an implementation that has low cost per iteration, also achieving fast convergence rates. We present a probabilistic worst case complexity analysis for our stochastic coordinate proximal gradient method in convex and nonconvex settings; in particular, we prove high-probability bounds on the number of iterations before a given optimality is achieved. Extensive numerical results also confirm the efficiency of our algorithm.Funding: This work was supported by Norway Grants 2014-2021 [Grant ELO-Hyp 24/2020]; Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii [Grants PN-III-P4-PCE-2021-0720, L2O-MOC, nr 70/2022]; and the ITN-ETN project TraDE-OPT funded by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement [Grant 861137].\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0044\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文处理的是目标函数为两个项之和的复合优化问题;其中一个项具有沿随机子空间的利普斯奇兹连续梯度,并且可能是非凸的,而第二个项是简单可微的,但可能是非凸和不可分的。在这种情况下,我们设计了一种随机坐标近似梯度法,它考虑到了目标函数的不可分割复合形式。该算法通过在每次迭代中沿用户确定维度的随机子空间构建整个不可分割目标函数的局部近似模型来实现可扩展性。我们概述了选择随机子空间的高效技术,从而实现了每次迭代成本低、收敛速度快的算法。我们提出了随机坐标近似梯度法在凸和非凸环境下的概率最坏情况复杂性分析;特别是,我们证明了在达到给定最优性之前迭代次数的高概率边界。广泛的数值结果也证实了我们算法的效率:这项工作得到了挪威 2014-2021 年赠款[赠款 ELO-Hyp 24/2020]、Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii [赠款 PN-III-P4-PCE-2021-0720, L2O-MOC, nr 70/2022]以及 ITN-ETN 项目的支持;以及由欧盟 "地平线 2020 研究与创新计划 "资助的 ITN-ETN 项目 TraDE-OPT,根据 Marie Skłodowska-Curie 补助金协议[第 861137 号补助金]。
Efficiency of Stochastic Coordinate Proximal Gradient Methods on Nonseparable Composite Optimization
This paper deals with composite optimization problems having the objective function formed as the sum of two terms; one has a Lipschitz continuous gradient along random subspaces and may be nonconvex, and the second term is simple and differentiable but possibly nonconvex and nonseparable. Under these settings, we design a stochastic coordinate proximal gradient method that takes into account the nonseparable composite form of the objective function. This algorithm achieves scalability by constructing at each iteration a local approximation model of the whole nonseparable objective function along a random subspace with user-determined dimension. We outline efficient techniques for selecting the random subspace, yielding an implementation that has low cost per iteration, also achieving fast convergence rates. We present a probabilistic worst case complexity analysis for our stochastic coordinate proximal gradient method in convex and nonconvex settings; in particular, we prove high-probability bounds on the number of iterations before a given optimality is achieved. Extensive numerical results also confirm the efficiency of our algorithm.Funding: This work was supported by Norway Grants 2014-2021 [Grant ELO-Hyp 24/2020]; Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii [Grants PN-III-P4-PCE-2021-0720, L2O-MOC, nr 70/2022]; and the ITN-ETN project TraDE-OPT funded by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement [Grant 861137].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.