{"title":"功能时间序列的监督降维","authors":"Guochang Wang, Zengyao Wen, Shanming Jia, Shanshan Liang","doi":"10.1007/s00362-023-01505-1","DOIUrl":null,"url":null,"abstract":"<p>Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal component and fixed basis expansion are unsupervised and typically result in information loss. Then, the functional time series model has an urgent need for a supervised dimension reduction method. The functional sufficient dimension reduction method is a supervised technique that adequately exploits the regression structure information, resulting in minimal information loss. Functional sliced inverse regression (FSIR) is the most popular functional sufficient dimension reduction method, but it cannot be applied directly to functional time series model. In this paper, we examine a functional time series model in which the response is a scalar time series and the explanatory variable is functional time series. We propose a novel supervised dimension reduction technique for the regression model by combining the FSIR and blind source separation methods. Furthermore, we propose innovative strategies for selecting the dimensionality of dimension reduction space and the lags of the functional time series. Numerical studies, including simulation studies and a real data analysis are show the effectiveness of the proposed methods.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised dimension reduction for functional time series\",\"authors\":\"Guochang Wang, Zengyao Wen, Shanming Jia, Shanshan Liang\",\"doi\":\"10.1007/s00362-023-01505-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal component and fixed basis expansion are unsupervised and typically result in information loss. Then, the functional time series model has an urgent need for a supervised dimension reduction method. The functional sufficient dimension reduction method is a supervised technique that adequately exploits the regression structure information, resulting in minimal information loss. Functional sliced inverse regression (FSIR) is the most popular functional sufficient dimension reduction method, but it cannot be applied directly to functional time series model. In this paper, we examine a functional time series model in which the response is a scalar time series and the explanatory variable is functional time series. We propose a novel supervised dimension reduction technique for the regression model by combining the FSIR and blind source separation methods. Furthermore, we propose innovative strategies for selecting the dimensionality of dimension reduction space and the lags of the functional time series. Numerical studies, including simulation studies and a real data analysis are show the effectiveness of the proposed methods.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-023-01505-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-023-01505-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Supervised dimension reduction for functional time series
Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal component and fixed basis expansion are unsupervised and typically result in information loss. Then, the functional time series model has an urgent need for a supervised dimension reduction method. The functional sufficient dimension reduction method is a supervised technique that adequately exploits the regression structure information, resulting in minimal information loss. Functional sliced inverse regression (FSIR) is the most popular functional sufficient dimension reduction method, but it cannot be applied directly to functional time series model. In this paper, we examine a functional time series model in which the response is a scalar time series and the explanatory variable is functional time series. We propose a novel supervised dimension reduction technique for the regression model by combining the FSIR and blind source separation methods. Furthermore, we propose innovative strategies for selecting the dimensionality of dimension reduction space and the lags of the functional time series. Numerical studies, including simulation studies and a real data analysis are show the effectiveness of the proposed methods.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.