鲁棒动态优化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Amir Ali Ahmadi, Oktay Günlük
{"title":"鲁棒动态优化","authors":"Amir Ali Ahmadi, Oktay Günlük","doi":"10.1287/moor.2023.0116","DOIUrl":null,"url":null,"abstract":"A robust-to-dynamics optimization (RDO) problem is an optimization problem specified by two pieces of input: (i) a mathematical program (an objective function [Formula: see text] and a feasible set [Formula: see text]) and (ii) a dynamical system (a map [Formula: see text]). Its goal is to minimize f over the set [Formula: see text] of initial conditions that forever remain in [Formula: see text] under g. The focus of this paper is on the case where the mathematical program is a linear program and where the dynamical system is either a known linear map or an uncertain linear map that can change over time. In both cases, we study a converging sequence of polyhedral outer approximations and (lifted) spectrahedral inner approximations to [Formula: see text]. Our inner approximations are optimized with respect to the objective function f, and their semidefinite characterization—which has a semidefinite constraint of fixed size—is obtained by applying polar duality to convex sets that are invariant under (multiple) linear maps. We characterize three barriers that can stop convergence of the outer approximations to [Formula: see text] from being finite. We prove that once these barriers are removed, our inner and outer approximating procedures find an optimal solution and a certificate of optimality for the RDO problem in a finite number of steps. Moreover, in the case where the dynamics are linear, we show that this phenomenon occurs in a number of steps that can be computed in time polynomial in the bit size of the input data. Our analysis also leads to a polynomial-time algorithm for RDO instances where the spectral radius of the linear map is bounded above by any constant less than one. Finally, in our concluding section, we propose a broader research agenda for studying optimization problems with dynamical systems constraints, of which RDO is a special case.Funding: O. Günlük was partially supported by the Office of Naval Research [Grant N00014-21-1-2575]. This work was partially funded by the Alfred P. Sloan Foundation, the Air Force Office of Scientific Research, Defense Advanced Research Projects Agency [Young Faculty Award], the National Science Foundation [Faculty Early Career Development Program Award], and Google [Faculty Award].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust-to-Dynamics Optimization\",\"authors\":\"Amir Ali Ahmadi, Oktay Günlük\",\"doi\":\"10.1287/moor.2023.0116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust-to-dynamics optimization (RDO) problem is an optimization problem specified by two pieces of input: (i) a mathematical program (an objective function [Formula: see text] and a feasible set [Formula: see text]) and (ii) a dynamical system (a map [Formula: see text]). Its goal is to minimize f over the set [Formula: see text] of initial conditions that forever remain in [Formula: see text] under g. The focus of this paper is on the case where the mathematical program is a linear program and where the dynamical system is either a known linear map or an uncertain linear map that can change over time. In both cases, we study a converging sequence of polyhedral outer approximations and (lifted) spectrahedral inner approximations to [Formula: see text]. Our inner approximations are optimized with respect to the objective function f, and their semidefinite characterization—which has a semidefinite constraint of fixed size—is obtained by applying polar duality to convex sets that are invariant under (multiple) linear maps. We characterize three barriers that can stop convergence of the outer approximations to [Formula: see text] from being finite. We prove that once these barriers are removed, our inner and outer approximating procedures find an optimal solution and a certificate of optimality for the RDO problem in a finite number of steps. Moreover, in the case where the dynamics are linear, we show that this phenomenon occurs in a number of steps that can be computed in time polynomial in the bit size of the input data. Our analysis also leads to a polynomial-time algorithm for RDO instances where the spectral radius of the linear map is bounded above by any constant less than one. Finally, in our concluding section, we propose a broader research agenda for studying optimization problems with dynamical systems constraints, of which RDO is a special case.Funding: O. Günlük was partially supported by the Office of Naval Research [Grant N00014-21-1-2575]. This work was partially funded by the Alfred P. Sloan Foundation, the Air Force Office of Scientific Research, Defense Advanced Research Projects Agency [Young Faculty Award], the National Science Foundation [Faculty Early Career Development Program Award], and Google [Faculty Award].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0116\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

鲁棒-动态优化(RDO)问题是一个优化问题,由两部分输入指定:(i) 数学程序(目标函数[公式:见正文]和可行集[公式:见正文]);(ii) 动态系统(映射[公式:见正文])。本文的重点是数学程序是线性程序,动态系统是已知线性地图或随时间变化的不确定线性地图的情况。在这两种情况下,我们研究了多面体外近似和(提升的)谱面内近似[公式:见正文]的收敛序列。我们的内近似是针对目标函数 f 进行优化的,而它们的半有限表征--具有固定大小的半有限约束--是通过对在(多个)线性映射下不变的凸集应用极对偶性而获得的。我们描述了三个障碍,它们可以阻止[公式:见正文]的外近似的有限收敛。我们证明,一旦消除这些障碍,我们的内部和外部近似程序就能在有限步数内找到最优解和 RDO 问题的最优性证书。此外,在动态是线性的情况下,我们还证明了这一现象发生的步数,其计算时间与输入数据的比特大小成多项式关系。我们的分析还为 RDO 实例提供了一种多项式时间算法,在这种情况下,线性映射的谱半径以小于 1 的任意常数为界。最后,在结论部分,我们提出了研究具有动力系统约束的优化问题的更广泛的研究议程,RDO 就是其中的一个特例:O. Günlük 得到了美国海军研究办公室的部分资助[拨款 N00014-21-1-2575]。这项工作的部分经费来自阿尔弗雷德-斯隆基金会(Alfred P. Sloan Foundation)、空军科学研究办公室(Air Force Office of Scientific Research)、国防高级研究计划局(Defense Advanced Research Projects Agency)[青年教师奖]、美国国家科学基金会(National Science Foundation)[教师早期职业发展计划奖]和谷歌公司(Google)[教师奖]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust-to-Dynamics Optimization
A robust-to-dynamics optimization (RDO) problem is an optimization problem specified by two pieces of input: (i) a mathematical program (an objective function [Formula: see text] and a feasible set [Formula: see text]) and (ii) a dynamical system (a map [Formula: see text]). Its goal is to minimize f over the set [Formula: see text] of initial conditions that forever remain in [Formula: see text] under g. The focus of this paper is on the case where the mathematical program is a linear program and where the dynamical system is either a known linear map or an uncertain linear map that can change over time. In both cases, we study a converging sequence of polyhedral outer approximations and (lifted) spectrahedral inner approximations to [Formula: see text]. Our inner approximations are optimized with respect to the objective function f, and their semidefinite characterization—which has a semidefinite constraint of fixed size—is obtained by applying polar duality to convex sets that are invariant under (multiple) linear maps. We characterize three barriers that can stop convergence of the outer approximations to [Formula: see text] from being finite. We prove that once these barriers are removed, our inner and outer approximating procedures find an optimal solution and a certificate of optimality for the RDO problem in a finite number of steps. Moreover, in the case where the dynamics are linear, we show that this phenomenon occurs in a number of steps that can be computed in time polynomial in the bit size of the input data. Our analysis also leads to a polynomial-time algorithm for RDO instances where the spectral radius of the linear map is bounded above by any constant less than one. Finally, in our concluding section, we propose a broader research agenda for studying optimization problems with dynamical systems constraints, of which RDO is a special case.Funding: O. Günlük was partially supported by the Office of Naval Research [Grant N00014-21-1-2575]. This work was partially funded by the Alfred P. Sloan Foundation, the Air Force Office of Scientific Research, Defense Advanced Research Projects Agency [Young Faculty Award], the National Science Foundation [Faculty Early Career Development Program Award], and Google [Faculty Award].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信