Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov
{"title":"线性随机逼近的 Polyak-Ruppert 平均迭代的有限时间高概率边界","authors":"Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov","doi":"10.1287/moor.2022.0179","DOIUrl":null,"url":null,"abstract":"This paper provides a finite-time analysis of linear stochastic approximation (LSA) algorithms with fixed step size, a core method in statistics and machine learning. LSA is used to compute approximate solutions of a d-dimensional linear system [Formula: see text] for which [Formula: see text] can only be estimated by (asymptotically) unbiased observations [Formula: see text]. We consider here the case where [Formula: see text] is an a sequence of independent and identically distributed random variables sequence or a uniformly geometrically ergodic Markov chain. We derive pth moment and high-probability deviation bounds for the iterates defined by LSA and its Polyak–Ruppert-averaged version. Our finite-time instance-dependent bounds for the averaged LSA iterates are sharp in the sense that the leading term we obtain coincides with the local asymptotic minimax limit. Moreover, the remainder terms of our bounds admit a tight dependence on the mixing time [Formula: see text] of the underlying chain and the norm of the noise variables. We emphasize that our result requires the LSA step size to scale only with logarithm of the problem dimension d.Funding: The work of A. Durmus and E. Moulines was partly supported by [Grant ANR-19-CHIA-0002]. This project received funding from the European Research Council [ERC-SyG OCEAN Grant 101071601]. The research of A. Naumov and S. Samsonov was prepared within the framework of the HSE University Basic Research Program.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"185 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-Time High-Probability Bounds for Polyak–Ruppert Averaged Iterates of Linear Stochastic Approximation\",\"authors\":\"Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov\",\"doi\":\"10.1287/moor.2022.0179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a finite-time analysis of linear stochastic approximation (LSA) algorithms with fixed step size, a core method in statistics and machine learning. LSA is used to compute approximate solutions of a d-dimensional linear system [Formula: see text] for which [Formula: see text] can only be estimated by (asymptotically) unbiased observations [Formula: see text]. We consider here the case where [Formula: see text] is an a sequence of independent and identically distributed random variables sequence or a uniformly geometrically ergodic Markov chain. We derive pth moment and high-probability deviation bounds for the iterates defined by LSA and its Polyak–Ruppert-averaged version. Our finite-time instance-dependent bounds for the averaged LSA iterates are sharp in the sense that the leading term we obtain coincides with the local asymptotic minimax limit. Moreover, the remainder terms of our bounds admit a tight dependence on the mixing time [Formula: see text] of the underlying chain and the norm of the noise variables. We emphasize that our result requires the LSA step size to scale only with logarithm of the problem dimension d.Funding: The work of A. Durmus and E. Moulines was partly supported by [Grant ANR-19-CHIA-0002]. This project received funding from the European Research Council [ERC-SyG OCEAN Grant 101071601]. The research of A. Naumov and S. Samsonov was prepared within the framework of the HSE University Basic Research Program.\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2022.0179\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0179","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文对具有固定步长的线性随机逼近(LSA)算法进行了有限时间分析,该算法是统计学和机器学习的核心方法。LSA 用于计算 d 维线性系统[公式:见正文]的近似解,其中[公式:见正文]只能通过(渐近)无偏观测[公式:见正文]来估计。在此,我们考虑[公式:见正文]是独立且同分布随机变量序列或均匀几何遍历马尔可夫链的情况。我们推导出 LSA 及其 Polyak-Ruppert 平均版本所定义迭代的 pth 矩和高概率偏差边界。我们得到的 LSA 平均迭代的有限时间实例相关界限是尖锐的,因为我们得到的前导项与局部渐近最小极限相吻合。此外,我们的边界余项与底层链的混合时间[公式:见正文]和噪声变量的规范有紧密联系。我们强调,我们的结果要求 LSA 步长仅与问题维度 d.Funding 的对数成比例:A. Durmus 和 E. Moulines 的工作得到了[ANR-19-CHIA-0002 号资助]的部分支持。本项目得到了欧洲研究理事会 [ERC-SyG OCEAN Grant 101071601] 的资助。A. Naumov 和 S. Samsonov 的研究是在 HSE 大学基础研究计划框架内进行的。
Finite-Time High-Probability Bounds for Polyak–Ruppert Averaged Iterates of Linear Stochastic Approximation
This paper provides a finite-time analysis of linear stochastic approximation (LSA) algorithms with fixed step size, a core method in statistics and machine learning. LSA is used to compute approximate solutions of a d-dimensional linear system [Formula: see text] for which [Formula: see text] can only be estimated by (asymptotically) unbiased observations [Formula: see text]. We consider here the case where [Formula: see text] is an a sequence of independent and identically distributed random variables sequence or a uniformly geometrically ergodic Markov chain. We derive pth moment and high-probability deviation bounds for the iterates defined by LSA and its Polyak–Ruppert-averaged version. Our finite-time instance-dependent bounds for the averaged LSA iterates are sharp in the sense that the leading term we obtain coincides with the local asymptotic minimax limit. Moreover, the remainder terms of our bounds admit a tight dependence on the mixing time [Formula: see text] of the underlying chain and the norm of the noise variables. We emphasize that our result requires the LSA step size to scale only with logarithm of the problem dimension d.Funding: The work of A. Durmus and E. Moulines was partly supported by [Grant ANR-19-CHIA-0002]. This project received funding from the European Research Council [ERC-SyG OCEAN Grant 101071601]. The research of A. Naumov and S. Samsonov was prepared within the framework of the HSE University Basic Research Program.
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.