Orizon Pereira Ferreira, Yingchao Gao, Sándor Zoltán Németh, Petra Renáta Rigó
{"title":"球面梯度投影法、互补问题和共正性","authors":"Orizon Pereira Ferreira, Yingchao Gao, Sándor Zoltán Németh, Petra Renáta Rigó","doi":"10.1007/s10898-024-01390-4","DOIUrl":null,"url":null,"abstract":"<p>By using a constant step-size, the convergence analysis of the gradient projection method on the sphere is presented for a closed spherically convex set. This algorithm is applied to discuss copositivity of operators with respect to cones. This approach can also be used to analyse solvability of nonlinear cone-complementarity problems. To our best knowledge this is the first numerical method related to the copositivity of operators with respect to the positive semidefinite cone. Numerical results concerning the copositivity of operators are also provided.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"62 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient projection method on the sphere, complementarity problems and copositivity\",\"authors\":\"Orizon Pereira Ferreira, Yingchao Gao, Sándor Zoltán Németh, Petra Renáta Rigó\",\"doi\":\"10.1007/s10898-024-01390-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By using a constant step-size, the convergence analysis of the gradient projection method on the sphere is presented for a closed spherically convex set. This algorithm is applied to discuss copositivity of operators with respect to cones. This approach can also be used to analyse solvability of nonlinear cone-complementarity problems. To our best knowledge this is the first numerical method related to the copositivity of operators with respect to the positive semidefinite cone. Numerical results concerning the copositivity of operators are also provided.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01390-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01390-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Gradient projection method on the sphere, complementarity problems and copositivity
By using a constant step-size, the convergence analysis of the gradient projection method on the sphere is presented for a closed spherically convex set. This algorithm is applied to discuss copositivity of operators with respect to cones. This approach can also be used to analyse solvability of nonlinear cone-complementarity problems. To our best knowledge this is the first numerical method related to the copositivity of operators with respect to the positive semidefinite cone. Numerical results concerning the copositivity of operators are also provided.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.