{"title":"PCD 刀具的激光加工特性及建模分析","authors":"Ruiwang Tan, Xu Wang, Zhanjiang Yu, Guangfeng Shi, Shen Yang, Yiquan Li, Jinkai Xu","doi":"10.1088/1555-6611/ad3ae5","DOIUrl":null,"url":null,"abstract":"Through in-depth analysis of the experimental details and forming patterns of the nanosecond laser ablation polycrystalline diamond (PCD) textured tool processing system, this study explores the microscopic morphology and dimensions of micro-pits texture on the surface of PCD tools influenced by defocus amount, laser power, and pulse frequency. Experimental results indicate that the micro-pit textures generated under different parameters exhibit diversity, including rounded structure, fragments, recast layers, and heat-affected zones. The diameter and depth of micro-pits are comprehensively affected by defocus amount, laser power, and pulse frequency, showing complex patterns. After a thorough analysis of the effects of each parameter on the texture morphology, an artificial neural network (ANN) model is introduced for the prediction of micro-pit dimensions. Through model training and optimization, accurate predictions of micro-pit diameter and depth are obtained. In comparison to traditional regression models, the ANN model demonstrates outstanding predictive performance, validating its applicability in complex machining processes. This study not only provides a profound understanding of the processing patterns of PCD textured tools but also offers an effective predictive model for the optimization and control of similar future machining processes.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"127 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser processing characteristics of PCD tool and modeling analysis\",\"authors\":\"Ruiwang Tan, Xu Wang, Zhanjiang Yu, Guangfeng Shi, Shen Yang, Yiquan Li, Jinkai Xu\",\"doi\":\"10.1088/1555-6611/ad3ae5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through in-depth analysis of the experimental details and forming patterns of the nanosecond laser ablation polycrystalline diamond (PCD) textured tool processing system, this study explores the microscopic morphology and dimensions of micro-pits texture on the surface of PCD tools influenced by defocus amount, laser power, and pulse frequency. Experimental results indicate that the micro-pit textures generated under different parameters exhibit diversity, including rounded structure, fragments, recast layers, and heat-affected zones. The diameter and depth of micro-pits are comprehensively affected by defocus amount, laser power, and pulse frequency, showing complex patterns. After a thorough analysis of the effects of each parameter on the texture morphology, an artificial neural network (ANN) model is introduced for the prediction of micro-pit dimensions. Through model training and optimization, accurate predictions of micro-pit diameter and depth are obtained. In comparison to traditional regression models, the ANN model demonstrates outstanding predictive performance, validating its applicability in complex machining processes. This study not only provides a profound understanding of the processing patterns of PCD textured tools but also offers an effective predictive model for the optimization and control of similar future machining processes.\",\"PeriodicalId\":17976,\"journal\":{\"name\":\"Laser Physics\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1555-6611/ad3ae5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad3ae5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Laser processing characteristics of PCD tool and modeling analysis
Through in-depth analysis of the experimental details and forming patterns of the nanosecond laser ablation polycrystalline diamond (PCD) textured tool processing system, this study explores the microscopic morphology and dimensions of micro-pits texture on the surface of PCD tools influenced by defocus amount, laser power, and pulse frequency. Experimental results indicate that the micro-pit textures generated under different parameters exhibit diversity, including rounded structure, fragments, recast layers, and heat-affected zones. The diameter and depth of micro-pits are comprehensively affected by defocus amount, laser power, and pulse frequency, showing complex patterns. After a thorough analysis of the effects of each parameter on the texture morphology, an artificial neural network (ANN) model is introduced for the prediction of micro-pit dimensions. Through model training and optimization, accurate predictions of micro-pit diameter and depth are obtained. In comparison to traditional regression models, the ANN model demonstrates outstanding predictive performance, validating its applicability in complex machining processes. This study not only provides a profound understanding of the processing patterns of PCD textured tools but also offers an effective predictive model for the optimization and control of similar future machining processes.
期刊介绍:
Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics