Xi Zhang, Xiaoming Zhao, Jiawang Ge, Shuxin Li, Tingshan Zhang
{"title":"中国西北部鄂尔多斯盆地东南部二叠纪下统富含有机质的海相大陆过渡页岩的喀斯特地貌沉积步伐","authors":"Xi Zhang, Xiaoming Zhao, Jiawang Ge, Shuxin Li, Tingshan Zhang","doi":"10.1306/11152322091","DOIUrl":null,"url":null,"abstract":"Organic-rich continental and marine–continental (i.e., transitional) shales are characterized by numerous hydrocarbon production layers having an uneven horizontal distribution, which are challenging to locate and exploit. We examined the effects of karst topography on organic carbon accumulation during the early Permian in the southeastern Ordos Basin, northwestern China, using outcrop and well data. Our study involved geomorphological, sedimentological, petrological, and geochemical methods. We identified a regional unconformity on the Dongdayao Limestone (DDYL) that formed in the early Permian (Asselian; i.e., in the Shanxi Formation) in the study area based on (1) cave, pore, and breccia development in outcrops and drill cores; (2) high Mn–Fe and low Sr contents associated with negative δ18O and normal δ13C values, which are indicative of strong leaching by meteoric waters; and (3) the irregular thickness of the DDYL that is indicative of differential karstification, resulting in the formation of horizontal gullies. The karst topography of the DDYL was identified based on the moldic and residual thickness methods, including karst highland, gentle slope, and microbasin geomorphic units. We propose that the karst topography controlled the redox environment and led to enrichment of the organic-rich transitional shales in the selected submember of the Shanxi Formation. The U/Th, V/Cr, and V/(V+Ni) ratios exhibit a linear relationship with geomorphic unit types. The karst microbasins had a weakly oxic environment, which widely preserved thick, organic-rich, transitional shales having high total organic carbon content and gas-bearing potential.","PeriodicalId":7124,"journal":{"name":"AAPG Bulletin","volume":"44 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Karst topography paces the deposition of lower Permian, organic-rich, marine–continental transitional shales in the southeastern Ordos Basin, northwestern China\",\"authors\":\"Xi Zhang, Xiaoming Zhao, Jiawang Ge, Shuxin Li, Tingshan Zhang\",\"doi\":\"10.1306/11152322091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic-rich continental and marine–continental (i.e., transitional) shales are characterized by numerous hydrocarbon production layers having an uneven horizontal distribution, which are challenging to locate and exploit. We examined the effects of karst topography on organic carbon accumulation during the early Permian in the southeastern Ordos Basin, northwestern China, using outcrop and well data. Our study involved geomorphological, sedimentological, petrological, and geochemical methods. We identified a regional unconformity on the Dongdayao Limestone (DDYL) that formed in the early Permian (Asselian; i.e., in the Shanxi Formation) in the study area based on (1) cave, pore, and breccia development in outcrops and drill cores; (2) high Mn–Fe and low Sr contents associated with negative δ18O and normal δ13C values, which are indicative of strong leaching by meteoric waters; and (3) the irregular thickness of the DDYL that is indicative of differential karstification, resulting in the formation of horizontal gullies. The karst topography of the DDYL was identified based on the moldic and residual thickness methods, including karst highland, gentle slope, and microbasin geomorphic units. We propose that the karst topography controlled the redox environment and led to enrichment of the organic-rich transitional shales in the selected submember of the Shanxi Formation. The U/Th, V/Cr, and V/(V+Ni) ratios exhibit a linear relationship with geomorphic unit types. The karst microbasins had a weakly oxic environment, which widely preserved thick, organic-rich, transitional shales having high total organic carbon content and gas-bearing potential.\",\"PeriodicalId\":7124,\"journal\":{\"name\":\"AAPG Bulletin\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPG Bulletin\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1306/11152322091\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPG Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1306/11152322091","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Karst topography paces the deposition of lower Permian, organic-rich, marine–continental transitional shales in the southeastern Ordos Basin, northwestern China
Organic-rich continental and marine–continental (i.e., transitional) shales are characterized by numerous hydrocarbon production layers having an uneven horizontal distribution, which are challenging to locate and exploit. We examined the effects of karst topography on organic carbon accumulation during the early Permian in the southeastern Ordos Basin, northwestern China, using outcrop and well data. Our study involved geomorphological, sedimentological, petrological, and geochemical methods. We identified a regional unconformity on the Dongdayao Limestone (DDYL) that formed in the early Permian (Asselian; i.e., in the Shanxi Formation) in the study area based on (1) cave, pore, and breccia development in outcrops and drill cores; (2) high Mn–Fe and low Sr contents associated with negative δ18O and normal δ13C values, which are indicative of strong leaching by meteoric waters; and (3) the irregular thickness of the DDYL that is indicative of differential karstification, resulting in the formation of horizontal gullies. The karst topography of the DDYL was identified based on the moldic and residual thickness methods, including karst highland, gentle slope, and microbasin geomorphic units. We propose that the karst topography controlled the redox environment and led to enrichment of the organic-rich transitional shales in the selected submember of the Shanxi Formation. The U/Th, V/Cr, and V/(V+Ni) ratios exhibit a linear relationship with geomorphic unit types. The karst microbasins had a weakly oxic environment, which widely preserved thick, organic-rich, transitional shales having high total organic carbon content and gas-bearing potential.
期刊介绍:
While the 21st-century AAPG Bulletin has undergone some changes since 1917, enlarging to 8 ½ x 11” size to incorporate more material and being published digitally as well as in print, it continues to adhere to the primary purpose of the organization, which is to advance the science of geology especially as it relates to petroleum, natural gas, other subsurface fluids, and mineral resources.
Delivered digitally or in print monthly to each AAPG Member as a part of membership dues, the AAPG Bulletin is one of the most respected, peer-reviewed technical journals in existence, with recent issues containing papers focused on such topics as the Middle East, channel detection, China, permeability, subseismic fault prediction, the U.S., and Africa.