Haroon Asghar, Rizwan Ahmed, Zeshan A Umar, Tahani A Alrebdi, M Aslam Baig
{"title":"基于激光烧蚀法制备的碳掺银纳米颗粒可饱和吸收体的无源 Q 开关掺 Er 光纤激光器","authors":"Haroon Asghar, Rizwan Ahmed, Zeshan A Umar, Tahani A Alrebdi, M Aslam Baig","doi":"10.1088/1555-6611/ad38b3","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the effect of carbon-doped silver nanoparticles on the Q-switched performance of erbium-doped fiber laser (EDFL). The carbon-doped silver nanoparticles were synthesized using a laser ablation method. The prepared nanoparticles were inserted between fiber ferrules using the adhesion process of the index-matched gel. Incorporating a saturable absorber inside the laser cavity initiates a stable Q-switched mechanism at 11.2 mW of threshold power. The measured results demonstrate that as the pump power of EDFL increases from 11.2 to 267 mW, the pulse repetition, and pulse width tuned from 21.33 to 95.2 kHz and 13.3–3.18 <italic toggle=\"yes\">µ</italic>s, respectively. At 267 mW of pump, the maximum average output power, pulse energy, and peak power were further measured to be 2.36 mW, 24.68 nJ, and 7.76 mW, respectively. Besides, the stability and threshold characteristics of EDFL based on carbon-doped silver nanoparticles were further explored. This study shows that the synthesis of metal nanoparticles using the laser ablation technique and their implementation as saturable absorber represents a promising avenue for advancing ultrafast laser technologies with improved stablility, efficiency, and tunability.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"61 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passively Q-switched Er-doped fiber laser based on carbon-doped silver nanoparticles saturable absorber prepared using laser ablation method\",\"authors\":\"Haroon Asghar, Rizwan Ahmed, Zeshan A Umar, Tahani A Alrebdi, M Aslam Baig\",\"doi\":\"10.1088/1555-6611/ad38b3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the effect of carbon-doped silver nanoparticles on the Q-switched performance of erbium-doped fiber laser (EDFL). The carbon-doped silver nanoparticles were synthesized using a laser ablation method. The prepared nanoparticles were inserted between fiber ferrules using the adhesion process of the index-matched gel. Incorporating a saturable absorber inside the laser cavity initiates a stable Q-switched mechanism at 11.2 mW of threshold power. The measured results demonstrate that as the pump power of EDFL increases from 11.2 to 267 mW, the pulse repetition, and pulse width tuned from 21.33 to 95.2 kHz and 13.3–3.18 <italic toggle=\\\"yes\\\">µ</italic>s, respectively. At 267 mW of pump, the maximum average output power, pulse energy, and peak power were further measured to be 2.36 mW, 24.68 nJ, and 7.76 mW, respectively. Besides, the stability and threshold characteristics of EDFL based on carbon-doped silver nanoparticles were further explored. This study shows that the synthesis of metal nanoparticles using the laser ablation technique and their implementation as saturable absorber represents a promising avenue for advancing ultrafast laser technologies with improved stablility, efficiency, and tunability.\",\"PeriodicalId\":17976,\"journal\":{\"name\":\"Laser Physics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1555-6611/ad38b3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad38b3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Passively Q-switched Er-doped fiber laser based on carbon-doped silver nanoparticles saturable absorber prepared using laser ablation method
In this work, we investigate the effect of carbon-doped silver nanoparticles on the Q-switched performance of erbium-doped fiber laser (EDFL). The carbon-doped silver nanoparticles were synthesized using a laser ablation method. The prepared nanoparticles were inserted between fiber ferrules using the adhesion process of the index-matched gel. Incorporating a saturable absorber inside the laser cavity initiates a stable Q-switched mechanism at 11.2 mW of threshold power. The measured results demonstrate that as the pump power of EDFL increases from 11.2 to 267 mW, the pulse repetition, and pulse width tuned from 21.33 to 95.2 kHz and 13.3–3.18 µs, respectively. At 267 mW of pump, the maximum average output power, pulse energy, and peak power were further measured to be 2.36 mW, 24.68 nJ, and 7.76 mW, respectively. Besides, the stability and threshold characteristics of EDFL based on carbon-doped silver nanoparticles were further explored. This study shows that the synthesis of metal nanoparticles using the laser ablation technique and their implementation as saturable absorber represents a promising avenue for advancing ultrafast laser technologies with improved stablility, efficiency, and tunability.
期刊介绍:
Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics