{"title":"不可区分量子粒子的熵关系","authors":"Marius Lemm","doi":"10.1088/1742-5468/ad343a","DOIUrl":null,"url":null,"abstract":"The von Neumann entropy of a <italic toggle=\"yes\">k</italic>-body-reduced density matrix <italic toggle=\"yes\">γ</italic>\n<sub>\n<italic toggle=\"yes\">k</italic>\n</sub> quantifies the entanglement between <italic toggle=\"yes\">k</italic> quantum particles and the remaining ones. In this paper, we rigorously prove general properties of this entanglement entropy as a function of <italic toggle=\"yes\">k</italic>; it is concave for all <inline-formula>\n<tex-math><?CDATA $1\\unicode{x2A7D} k\\unicode{x2A7D} N$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>1</mml:mn><mml:mtext>⩽</mml:mtext><mml:mi>k</mml:mi><mml:mtext>⩽</mml:mtext><mml:mi>N</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad343aieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and non-decreasing until the midpoint <inline-formula>\n<tex-math><?CDATA $k\\unicode{x2A7D} \\lfloor{N/2} \\rfloor$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>k</mml:mi><mml:mtext>⩽</mml:mtext><mml:mo fence=\"false\" stretchy=\"false\">⌊</mml:mo><mml:mrow><mml:mi>N</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⌋</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad343aieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The results hold for indistinguishable quantum particles and are independent of the statistics.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropic relations for indistinguishable quantum particles\",\"authors\":\"Marius Lemm\",\"doi\":\"10.1088/1742-5468/ad343a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The von Neumann entropy of a <italic toggle=\\\"yes\\\">k</italic>-body-reduced density matrix <italic toggle=\\\"yes\\\">γ</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">k</italic>\\n</sub> quantifies the entanglement between <italic toggle=\\\"yes\\\">k</italic> quantum particles and the remaining ones. In this paper, we rigorously prove general properties of this entanglement entropy as a function of <italic toggle=\\\"yes\\\">k</italic>; it is concave for all <inline-formula>\\n<tex-math><?CDATA $1\\\\unicode{x2A7D} k\\\\unicode{x2A7D} N$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mtext>⩽</mml:mtext><mml:mi>k</mml:mi><mml:mtext>⩽</mml:mtext><mml:mi>N</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad343aieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and non-decreasing until the midpoint <inline-formula>\\n<tex-math><?CDATA $k\\\\unicode{x2A7D} \\\\lfloor{N/2} \\\\rfloor$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>k</mml:mi><mml:mtext>⩽</mml:mtext><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⌊</mml:mo><mml:mrow><mml:mi>N</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⌋</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad343aieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The results hold for indistinguishable quantum particles and are independent of the statistics.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad343a\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad343a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
一个 k 体还原密度矩阵 γk 的冯-诺依曼熵量化了 k 个量子粒子与其余粒子之间的纠缠。在本文中,我们严格证明了这种纠缠熵作为 k 的函数的一般性质;它对所有 1⩽k⩽N 都是凹的,并且在中点 k⩽⌊N/2⌋ 之前是不递减的。这些结果适用于不可区分的量子粒子,并且与统计量无关。
Entropic relations for indistinguishable quantum particles
The von Neumann entropy of a k-body-reduced density matrix γk quantifies the entanglement between k quantum particles and the remaining ones. In this paper, we rigorously prove general properties of this entanglement entropy as a function of k; it is concave for all 1⩽k⩽N and non-decreasing until the midpoint k⩽⌊N/2⌋. The results hold for indistinguishable quantum particles and are independent of the statistics.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina