Kamal Hassan, Amit Kumar Thakur, Gurraj Singh, Jaspreet Singh, Lovi Raj Gupta, Rajesh Singh
{"title":"人工智能在航空航天工程中的应用及其未来发展方向:系统性定量文献综述","authors":"Kamal Hassan, Amit Kumar Thakur, Gurraj Singh, Jaspreet Singh, Lovi Raj Gupta, Rajesh Singh","doi":"10.1007/s11831-024-10105-7","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to comprehensively analyze the most essential uses of artificial intelligence in Aerospace Engineering. We obtained papers initially published in academic journals using a Systematic Quantitative Literature Review (SQLR) methodology. We then used bibliometric methods to examine these articles, including keyword co-occurrences and bibliographic coupling. The findings enable us to provide an up-to-date sketch of the available literature, which is then incorporated into an interpretive framework that enables AI's significant antecedents and effects to be disentangled within the context of innovation. We highlight technological, security, and economic factors as antecedents prompting companies to adopt AI to innovate. As essential outcomes of the deployment of AI, in addition to identifying the disciplinary focuses, we also identify business organizations' product innovation, process innovation, aerospace business model innovation, and national security issues. We provide research recommendations for additional examination in connection to various forms of innovation, drawing on the most critical findings from this study.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"31 7","pages":"4031 - 4086"},"PeriodicalIF":9.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Artificial Intelligence in Aerospace Engineering and Its Future Directions: A Systematic Quantitative Literature Review\",\"authors\":\"Kamal Hassan, Amit Kumar Thakur, Gurraj Singh, Jaspreet Singh, Lovi Raj Gupta, Rajesh Singh\",\"doi\":\"10.1007/s11831-024-10105-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research aims to comprehensively analyze the most essential uses of artificial intelligence in Aerospace Engineering. We obtained papers initially published in academic journals using a Systematic Quantitative Literature Review (SQLR) methodology. We then used bibliometric methods to examine these articles, including keyword co-occurrences and bibliographic coupling. The findings enable us to provide an up-to-date sketch of the available literature, which is then incorporated into an interpretive framework that enables AI's significant antecedents and effects to be disentangled within the context of innovation. We highlight technological, security, and economic factors as antecedents prompting companies to adopt AI to innovate. As essential outcomes of the deployment of AI, in addition to identifying the disciplinary focuses, we also identify business organizations' product innovation, process innovation, aerospace business model innovation, and national security issues. We provide research recommendations for additional examination in connection to various forms of innovation, drawing on the most critical findings from this study.</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"31 7\",\"pages\":\"4031 - 4086\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-024-10105-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10105-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Application of Artificial Intelligence in Aerospace Engineering and Its Future Directions: A Systematic Quantitative Literature Review
This research aims to comprehensively analyze the most essential uses of artificial intelligence in Aerospace Engineering. We obtained papers initially published in academic journals using a Systematic Quantitative Literature Review (SQLR) methodology. We then used bibliometric methods to examine these articles, including keyword co-occurrences and bibliographic coupling. The findings enable us to provide an up-to-date sketch of the available literature, which is then incorporated into an interpretive framework that enables AI's significant antecedents and effects to be disentangled within the context of innovation. We highlight technological, security, and economic factors as antecedents prompting companies to adopt AI to innovate. As essential outcomes of the deployment of AI, in addition to identifying the disciplinary focuses, we also identify business organizations' product innovation, process innovation, aerospace business model innovation, and national security issues. We provide research recommendations for additional examination in connection to various forms of innovation, drawing on the most critical findings from this study.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.