具有增强光热效应的多功能可喷涂二维 MoS2/丝胶生物纳米复合敷料促进感染伤口愈合

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Libin Qiu, Lian Duan, Hongyu Lin, Min Wang, Huaping Liang, Guilong Peng, Xiao Yang, Yang Si, Shixiong Yi
{"title":"具有增强光热效应的多功能可喷涂二维 MoS2/丝胶生物纳米复合敷料促进感染伤口愈合","authors":"Libin Qiu,&nbsp;Lian Duan,&nbsp;Hongyu Lin,&nbsp;Min Wang,&nbsp;Huaping Liang,&nbsp;Guilong Peng,&nbsp;Xiao Yang,&nbsp;Yang Si,&nbsp;Shixiong Yi","doi":"10.1007/s42765-024-00407-7","DOIUrl":null,"url":null,"abstract":"<div><p>Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing. In this study, sericin, a bio-waste produced during the degumming of silk cocoons, is utilized to exfoliate MoS<sub>2</sub> layers and improve the dispersity and stability of MoS<sub>2</sub> nanosheets (MoS<sub>2</sub>-NSs). Moreover, owing to its ability to promote oxygen permeability and cell growth and its good biocompatibility, MoS<sub>2</sub>-NS/Sericin maintains its photothermal property under an 808 nm light source for a strong antibacterial activity as well as improves the fibroblast migration, which accelerates wound healing. Furthermore, the in vitro experiments indicates that MoS<sub>2</sub>-NS/Sericin can also scavenge reactive oxygen species (ROS) at an inflammatory stage of wound healing and transform classical activated macrophages (M1-type) into alternatively activated macrophages (M2-type), which is beneficial for wound recovery. Based on these results observed in vitro, full-thickness skin wound experiments are conducted on rats, and the corresponding results show that MoS<sub>2</sub>/Sericin under 808 nm irradiation exhibits the best performance in promoting wound healing. Overall, MoS<sub>2</sub>-NS/Sericin exhibits a high potential for bacteria-infected wound healing.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"1074 - 1091"},"PeriodicalIF":17.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional and Sprayable 2D MoS2/Silk Sericin Bio-Nanocomposite Dressings with Enhanced Photothermal Effect for Infected Wound Healing\",\"authors\":\"Libin Qiu,&nbsp;Lian Duan,&nbsp;Hongyu Lin,&nbsp;Min Wang,&nbsp;Huaping Liang,&nbsp;Guilong Peng,&nbsp;Xiao Yang,&nbsp;Yang Si,&nbsp;Shixiong Yi\",\"doi\":\"10.1007/s42765-024-00407-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing. In this study, sericin, a bio-waste produced during the degumming of silk cocoons, is utilized to exfoliate MoS<sub>2</sub> layers and improve the dispersity and stability of MoS<sub>2</sub> nanosheets (MoS<sub>2</sub>-NSs). Moreover, owing to its ability to promote oxygen permeability and cell growth and its good biocompatibility, MoS<sub>2</sub>-NS/Sericin maintains its photothermal property under an 808 nm light source for a strong antibacterial activity as well as improves the fibroblast migration, which accelerates wound healing. Furthermore, the in vitro experiments indicates that MoS<sub>2</sub>-NS/Sericin can also scavenge reactive oxygen species (ROS) at an inflammatory stage of wound healing and transform classical activated macrophages (M1-type) into alternatively activated macrophages (M2-type), which is beneficial for wound recovery. Based on these results observed in vitro, full-thickness skin wound experiments are conducted on rats, and the corresponding results show that MoS<sub>2</sub>/Sericin under 808 nm irradiation exhibits the best performance in promoting wound healing. Overall, MoS<sub>2</sub>-NS/Sericin exhibits a high potential for bacteria-infected wound healing.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 4\",\"pages\":\"1074 - 1091\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00407-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00407-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发新型抗菌敷料保护皮肤损伤免受感染对伤口愈合至关重要。在这项研究中,丝胶(一种在蚕茧脱胶过程中产生的生物废料)被用来剥离 MoS2 层,提高 MoS2 纳米片(MoS2-NSs)的分散性和稳定性。此外,由于 MoS2-NS/Sericin 具有促进氧气渗透和细胞生长的能力以及良好的生物相容性,因此在 808 纳米光源下仍能保持其光热特性,具有很强的抗菌活性,并能改善成纤维细胞迁移,加速伤口愈合。此外,体外实验表明,在伤口愈合的炎症阶段,MoS2-NS/丝胶还能清除活性氧(ROS),并将经典活化巨噬细胞(M1 型)转化为替代活化巨噬细胞(M2 型),有利于伤口恢复。根据体外观察到的这些结果,对大鼠进行了全厚皮肤伤口实验,相应的结果表明,在 808 纳米照射下,MoS2/丝裂霉素在促进伤口愈合方面表现最佳。总之,MoS2-NS/丝胶在细菌感染伤口愈合方面具有很高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifunctional and Sprayable 2D MoS2/Silk Sericin Bio-Nanocomposite Dressings with Enhanced Photothermal Effect for Infected Wound Healing

Multifunctional and Sprayable 2D MoS2/Silk Sericin Bio-Nanocomposite Dressings with Enhanced Photothermal Effect for Infected Wound Healing

Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing. In this study, sericin, a bio-waste produced during the degumming of silk cocoons, is utilized to exfoliate MoS2 layers and improve the dispersity and stability of MoS2 nanosheets (MoS2-NSs). Moreover, owing to its ability to promote oxygen permeability and cell growth and its good biocompatibility, MoS2-NS/Sericin maintains its photothermal property under an 808 nm light source for a strong antibacterial activity as well as improves the fibroblast migration, which accelerates wound healing. Furthermore, the in vitro experiments indicates that MoS2-NS/Sericin can also scavenge reactive oxygen species (ROS) at an inflammatory stage of wound healing and transform classical activated macrophages (M1-type) into alternatively activated macrophages (M2-type), which is beneficial for wound recovery. Based on these results observed in vitro, full-thickness skin wound experiments are conducted on rats, and the corresponding results show that MoS2/Sericin under 808 nm irradiation exhibits the best performance in promoting wound healing. Overall, MoS2-NS/Sericin exhibits a high potential for bacteria-infected wound healing.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信