Siobhan Light, Mark Gurwell, Alexander Thelen, Nicholas A Lombardo, Conor Nixon
{"title":"在 2009 年春分期间利用 eSMA 测量土卫六的平流层风","authors":"Siobhan Light, Mark Gurwell, Alexander Thelen, Nicholas A Lombardo, Conor Nixon","doi":"10.3847/psj/ad3355","DOIUrl":null,"url":null,"abstract":"Saturn’s moon Titan possesses stratospheric zonal winds that places it among a sparse class of planetary bodies known to have superrotation in their atmospheres. Few measurements have been made of these speeds in the upper stratosphere, leaving their seasonal variations still not well understood. We examined observations made with the extended Submillimeter Array in 2009 March (<italic toggle=\"yes\">L</italic>\n<sub>\n<italic toggle=\"yes\">s</italic>\n</sub> = 355°) and 2010 February (<italic toggle=\"yes\">L</italic>\n<sub>\n<italic toggle=\"yes\">s</italic>\n</sub> = 5°), shortly before and after Titan's northern spring equinox. Cassini observations and atmospheric models find equinoctial periods to be especially dynamic. Zonal wind calculations, derived from the Doppler frequency shift of CH<sub>3</sub>CN near 349.4 GHz, yielded speeds of 128 ± 27 m s<sup>−1</sup> in 2009 and 209 ± 48 m s<sup>−1</sup> in 2010. We estimated the measured emission to originate from vertical altitudes of <inline-formula>\n<tex-math>\n<?CDATA ${336}_{-88}^{+112}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>336</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>88</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>112</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad3355ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> km, equivalent to pressures of <inline-formula>\n<tex-math>\n<?CDATA ${3.8}_{-3.4}^{+19.2}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>3.8</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3.4</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>19.2</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad3355ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> Pa, commensurate with Titan’s upper stratosphere/lower mesosphere. This suggests a possible increase in zonal speeds during this period. The results are then compared to those from previous Cassini-inferred and direct-interferometric observations of winds, as well as general circulation model simulations, to form a more complete picture of the seasonal cycle of stratospheric zonal winds.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"888 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurements of Titan’s Stratospheric Winds during the 2009 Equinox with the eSMA\",\"authors\":\"Siobhan Light, Mark Gurwell, Alexander Thelen, Nicholas A Lombardo, Conor Nixon\",\"doi\":\"10.3847/psj/ad3355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saturn’s moon Titan possesses stratospheric zonal winds that places it among a sparse class of planetary bodies known to have superrotation in their atmospheres. Few measurements have been made of these speeds in the upper stratosphere, leaving their seasonal variations still not well understood. We examined observations made with the extended Submillimeter Array in 2009 March (<italic toggle=\\\"yes\\\">L</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">s</italic>\\n</sub> = 355°) and 2010 February (<italic toggle=\\\"yes\\\">L</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">s</italic>\\n</sub> = 5°), shortly before and after Titan's northern spring equinox. Cassini observations and atmospheric models find equinoctial periods to be especially dynamic. Zonal wind calculations, derived from the Doppler frequency shift of CH<sub>3</sub>CN near 349.4 GHz, yielded speeds of 128 ± 27 m s<sup>−1</sup> in 2009 and 209 ± 48 m s<sup>−1</sup> in 2010. We estimated the measured emission to originate from vertical altitudes of <inline-formula>\\n<tex-math>\\n<?CDATA ${336}_{-88}^{+112}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msubsup><mml:mrow><mml:mn>336</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>88</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>112</mml:mn></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"psjad3355ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> km, equivalent to pressures of <inline-formula>\\n<tex-math>\\n<?CDATA ${3.8}_{-3.4}^{+19.2}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msubsup><mml:mrow><mml:mn>3.8</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3.4</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>19.2</mml:mn></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"psjad3355ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> Pa, commensurate with Titan’s upper stratosphere/lower mesosphere. This suggests a possible increase in zonal speeds during this period. The results are then compared to those from previous Cassini-inferred and direct-interferometric observations of winds, as well as general circulation model simulations, to form a more complete picture of the seasonal cycle of stratospheric zonal winds.\",\"PeriodicalId\":34524,\"journal\":{\"name\":\"The Planetary Science Journal\",\"volume\":\"888 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Planetary Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/psj/ad3355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad3355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Measurements of Titan’s Stratospheric Winds during the 2009 Equinox with the eSMA
Saturn’s moon Titan possesses stratospheric zonal winds that places it among a sparse class of planetary bodies known to have superrotation in their atmospheres. Few measurements have been made of these speeds in the upper stratosphere, leaving their seasonal variations still not well understood. We examined observations made with the extended Submillimeter Array in 2009 March (Ls = 355°) and 2010 February (Ls = 5°), shortly before and after Titan's northern spring equinox. Cassini observations and atmospheric models find equinoctial periods to be especially dynamic. Zonal wind calculations, derived from the Doppler frequency shift of CH3CN near 349.4 GHz, yielded speeds of 128 ± 27 m s−1 in 2009 and 209 ± 48 m s−1 in 2010. We estimated the measured emission to originate from vertical altitudes of 336−88+112 km, equivalent to pressures of 3.8−3.4+19.2 Pa, commensurate with Titan’s upper stratosphere/lower mesosphere. This suggests a possible increase in zonal speeds during this period. The results are then compared to those from previous Cassini-inferred and direct-interferometric observations of winds, as well as general circulation model simulations, to form a more complete picture of the seasonal cycle of stratospheric zonal winds.