{"title":"$$\\mathcal {C}_{0}$ -semigroups 的插值和不可稀疏族","authors":"Raj Dahya","doi":"10.1007/s43037-023-00320-y","DOIUrl":null,"url":null,"abstract":"<p>We generalise a technique of Bhat and Skeide (J Funct Anal 269:1539–1562, 2015) to interpolate commuting families <span>\\(\\{S_{i}\\}_{i \\in \\mathcal {I}}\\)</span> of contractions on a Hilbert space <span>\\(\\mathcal {H}\\)</span>, to commuting families <span>\\(\\{T_{i}\\}_{i \\in \\mathcal {I}}\\)</span> of contractive <span>\\(\\mathcal {C}_{0}\\)</span>-semigroups on <span>\\(L^{2}(\\prod _{i \\in \\mathcal {I}}\\mathbb {T}) \\otimes \\mathcal {H}\\)</span>. As an excursus, we provide applications of the interpolations to time-discretisation and the embedding problem. Applied to Parrott’s construction (1970), we then demonstrate for <span>\\(d \\in \\mathbb {N}\\)</span> with <span>\\(d \\ge 3\\)</span> the existence of commuting families <span>\\(\\{T_{i}\\}_{i=1}^{d}\\)</span> of contractive <span>\\(\\mathcal {C}_{0}\\)</span>-semigroups which admit no simultaneous unitary dilation. As an application of these counter-examples, we obtain the residuality wrt.the topology of uniform <span>\\(\\textsc {wot}\\)</span>-convergence on compact subsets of <span>\\(\\mathbb {R}_{\\ge 0}^{d}\\)</span> of non-unitarily dilatable and non-unitarily approximable <i>d</i>-parameter contractive <span>\\(\\mathcal {C}_{0}\\)</span>-semigroups on separable infinite-dimensional Hilbert spaces for each <span>\\(d \\ge 3\\)</span>. Similar results are also developed for <i>d</i>-tuples of commuting contractions. And by building on the counter-examples of Varopoulos-Kaijser (1973–74), a 0-1-result is obtained for the von Neumann inequality. Finally, we discuss applications to rigidity as well as the embedding problem, viz. that ‘typical’ pairs of commuting operators can be simultaneously embedded into commuting pairs of <span>\\(\\mathcal {C}_{0}\\)</span>-semigroups, which extends results of Eisner (2009–2010).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolation and non-dilatable families of $$\\\\mathcal {C}_{0}$$ -semigroups\",\"authors\":\"Raj Dahya\",\"doi\":\"10.1007/s43037-023-00320-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalise a technique of Bhat and Skeide (J Funct Anal 269:1539–1562, 2015) to interpolate commuting families <span>\\\\(\\\\{S_{i}\\\\}_{i \\\\in \\\\mathcal {I}}\\\\)</span> of contractions on a Hilbert space <span>\\\\(\\\\mathcal {H}\\\\)</span>, to commuting families <span>\\\\(\\\\{T_{i}\\\\}_{i \\\\in \\\\mathcal {I}}\\\\)</span> of contractive <span>\\\\(\\\\mathcal {C}_{0}\\\\)</span>-semigroups on <span>\\\\(L^{2}(\\\\prod _{i \\\\in \\\\mathcal {I}}\\\\mathbb {T}) \\\\otimes \\\\mathcal {H}\\\\)</span>. As an excursus, we provide applications of the interpolations to time-discretisation and the embedding problem. Applied to Parrott’s construction (1970), we then demonstrate for <span>\\\\(d \\\\in \\\\mathbb {N}\\\\)</span> with <span>\\\\(d \\\\ge 3\\\\)</span> the existence of commuting families <span>\\\\(\\\\{T_{i}\\\\}_{i=1}^{d}\\\\)</span> of contractive <span>\\\\(\\\\mathcal {C}_{0}\\\\)</span>-semigroups which admit no simultaneous unitary dilation. As an application of these counter-examples, we obtain the residuality wrt.the topology of uniform <span>\\\\(\\\\textsc {wot}\\\\)</span>-convergence on compact subsets of <span>\\\\(\\\\mathbb {R}_{\\\\ge 0}^{d}\\\\)</span> of non-unitarily dilatable and non-unitarily approximable <i>d</i>-parameter contractive <span>\\\\(\\\\mathcal {C}_{0}\\\\)</span>-semigroups on separable infinite-dimensional Hilbert spaces for each <span>\\\\(d \\\\ge 3\\\\)</span>. Similar results are also developed for <i>d</i>-tuples of commuting contractions. And by building on the counter-examples of Varopoulos-Kaijser (1973–74), a 0-1-result is obtained for the von Neumann inequality. Finally, we discuss applications to rigidity as well as the embedding problem, viz. that ‘typical’ pairs of commuting operators can be simultaneously embedded into commuting pairs of <span>\\\\(\\\\mathcal {C}_{0}\\\\)</span>-semigroups, which extends results of Eisner (2009–2010).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-023-00320-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-023-00320-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Interpolation and non-dilatable families of $$\mathcal {C}_{0}$$ -semigroups
We generalise a technique of Bhat and Skeide (J Funct Anal 269:1539–1562, 2015) to interpolate commuting families \(\{S_{i}\}_{i \in \mathcal {I}}\) of contractions on a Hilbert space \(\mathcal {H}\), to commuting families \(\{T_{i}\}_{i \in \mathcal {I}}\) of contractive \(\mathcal {C}_{0}\)-semigroups on \(L^{2}(\prod _{i \in \mathcal {I}}\mathbb {T}) \otimes \mathcal {H}\). As an excursus, we provide applications of the interpolations to time-discretisation and the embedding problem. Applied to Parrott’s construction (1970), we then demonstrate for \(d \in \mathbb {N}\) with \(d \ge 3\) the existence of commuting families \(\{T_{i}\}_{i=1}^{d}\) of contractive \(\mathcal {C}_{0}\)-semigroups which admit no simultaneous unitary dilation. As an application of these counter-examples, we obtain the residuality wrt.the topology of uniform \(\textsc {wot}\)-convergence on compact subsets of \(\mathbb {R}_{\ge 0}^{d}\) of non-unitarily dilatable and non-unitarily approximable d-parameter contractive \(\mathcal {C}_{0}\)-semigroups on separable infinite-dimensional Hilbert spaces for each \(d \ge 3\). Similar results are also developed for d-tuples of commuting contractions. And by building on the counter-examples of Varopoulos-Kaijser (1973–74), a 0-1-result is obtained for the von Neumann inequality. Finally, we discuss applications to rigidity as well as the embedding problem, viz. that ‘typical’ pairs of commuting operators can be simultaneously embedded into commuting pairs of \(\mathcal {C}_{0}\)-semigroups, which extends results of Eisner (2009–2010).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.