DNA 修复缺陷与神经变性

IF 3 3区 生物学 Q2 GENETICS & HEREDITY
Baptiste Ropert , Christian Gallrein , Björn Schumacher
{"title":"DNA 修复缺陷与神经变性","authors":"Baptiste Ropert ,&nbsp;Christian Gallrein ,&nbsp;Björn Schumacher","doi":"10.1016/j.dnarep.2024.103679","DOIUrl":null,"url":null,"abstract":"<div><p>Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer’s Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson’s Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes – diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.</p></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"138 ","pages":"Article 103679"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1568786424000557/pdfft?md5=3327f387b995932786f0abdcf14eb3ac&pid=1-s2.0-S1568786424000557-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DNA repair deficiencies and neurodegeneration\",\"authors\":\"Baptiste Ropert ,&nbsp;Christian Gallrein ,&nbsp;Björn Schumacher\",\"doi\":\"10.1016/j.dnarep.2024.103679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer’s Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson’s Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes – diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.</p></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"138 \",\"pages\":\"Article 103679\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1568786424000557/pdfft?md5=3327f387b995932786f0abdcf14eb3ac&pid=1-s2.0-S1568786424000557-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424000557\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424000557","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病是工业化国家第二大死亡原因。阿尔茨海默氏症是当今最普遍、也是最广为人知的痴呆症。在由蛋白病引起的神经退行性疾病中,阿尔茨海默病和帕金森病占 90% 以上。DNA 修复缺陷综合征引起的神经退行性病变则鲜为人知。像科凯恩综合征(Cockayne - Werner Syndrome)或维尔纳综合征(Werner Syndrome)这样的疾病被称为类早衰综合征(progeroid syndromes),是一种导致患者过早衰老的疾病。在这篇综述中,我们旨在提请人们注意蛋白病相关神经变性与 DNA 修复缺陷导致的神经变性之间的共性,并讨论线粒体是如何与这两类疾病的发展相联系的。此外,我们还强调了线虫是一种宝贵且不可或缺的模式生物,可用于快速研究神经退行性变的保守过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA repair deficiencies and neurodegeneration

Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer’s Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson’s Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes – diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信