{"title":"复对称算子的范围包含和对角化","authors":"Cun Wang, Jiayi Zhao, Sen Zhu","doi":"10.4153/s0008414x24000294","DOIUrl":null,"url":null,"abstract":"<p>We consider the range inclusion and the diagonalization in the Jordan algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}_C$</span></span></img></span></span> of <span>C</span>-symmetric operators, that are, bounded linear operators <span>T</span> satisfying <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$CTC =T^{*}$</span></span></img></span></span>, where <span>C</span> is a conjugation on a separable complex Hilbert space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal H$</span></span></img></span></span>. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$T\\in \\mathcal {S}_C$</span></span></img></span></span>, we aim to describe the set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$C_{\\mathcal {R}(T)}$</span></span></img></span></span> of those operators <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$A\\in \\mathcal {S}_C$</span></span></img></span></span> satisfying the range inclusion <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {R}(A)\\subset \\mathcal {R}(T)$</span></span></img></span></span>. It is proved that (i) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$C_{\\mathcal {R}(T)}=T\\mathcal {S}_C T$</span></span></img></span></span> if and only if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {R}(T)$</span></span></img></span></span> is closed, (ii) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {C_{\\mathcal {R}(T)}}=\\overline {T\\mathcal {S}_C T}$</span></span></img></span></span>, and (iii) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$C_{\\overline {\\mathcal {R}(T)}}$</span></span></span></span> is the closure of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$C_{\\mathcal {R}(T)}$</span></span></span></span> in the strong operator topology. Also, we extend the classical Weyl–von Neumann Theorem to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}_C$</span></span></span></span>, showing that every self-adjoint operator in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}_C$</span></span></span></span> is the sum of a diagonal operator in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}_C$</span></span></span></span> and a compact operator with arbitrarily small Schatten <span>p</span>-norm for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline16.png\"/><span data-mathjax-type=\"texmath\"><span>$p\\in (1,\\infty )$</span></span></span></span>.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"266 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Range inclusion and diagonalization of complex symmetric operators\",\"authors\":\"Cun Wang, Jiayi Zhao, Sen Zhu\",\"doi\":\"10.4153/s0008414x24000294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the range inclusion and the diagonalization in the Jordan algebra <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {S}_C$</span></span></img></span></span> of <span>C</span>-symmetric operators, that are, bounded linear operators <span>T</span> satisfying <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$CTC =T^{*}$</span></span></img></span></span>, where <span>C</span> is a conjugation on a separable complex Hilbert space <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal H$</span></span></img></span></span>. For <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T\\\\in \\\\mathcal {S}_C$</span></span></img></span></span>, we aim to describe the set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C_{\\\\mathcal {R}(T)}$</span></span></img></span></span> of those operators <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$A\\\\in \\\\mathcal {S}_C$</span></span></img></span></span> satisfying the range inclusion <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {R}(A)\\\\subset \\\\mathcal {R}(T)$</span></span></img></span></span>. It is proved that (i) <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C_{\\\\mathcal {R}(T)}=T\\\\mathcal {S}_C T$</span></span></img></span></span> if and only if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {R}(T)$</span></span></img></span></span> is closed, (ii) <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {C_{\\\\mathcal {R}(T)}}=\\\\overline {T\\\\mathcal {S}_C T}$</span></span></img></span></span>, and (iii) <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$C_{\\\\overline {\\\\mathcal {R}(T)}}$</span></span></span></span> is the closure of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$C_{\\\\mathcal {R}(T)}$</span></span></span></span> in the strong operator topology. Also, we extend the classical Weyl–von Neumann Theorem to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {S}_C$</span></span></span></span>, showing that every self-adjoint operator in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline14.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {S}_C$</span></span></span></span> is the sum of a diagonal operator in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline15.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {S}_C$</span></span></span></span> and a compact operator with arbitrarily small Schatten <span>p</span>-norm for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline16.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$p\\\\in (1,\\\\infty )$</span></span></span></span>.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"266 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Range inclusion and diagonalization of complex symmetric operators
We consider the range inclusion and the diagonalization in the Jordan algebra $\mathcal {S}_C$ of C-symmetric operators, that are, bounded linear operators T satisfying $CTC =T^{*}$, where C is a conjugation on a separable complex Hilbert space $\mathcal H$. For $T\in \mathcal {S}_C$, we aim to describe the set $C_{\mathcal {R}(T)}$ of those operators $A\in \mathcal {S}_C$ satisfying the range inclusion $\mathcal {R}(A)\subset \mathcal {R}(T)$. It is proved that (i) $C_{\mathcal {R}(T)}=T\mathcal {S}_C T$ if and only if $\mathcal {R}(T)$ is closed, (ii) $\overline {C_{\mathcal {R}(T)}}=\overline {T\mathcal {S}_C T}$, and (iii) $C_{\overline {\mathcal {R}(T)}}$ is the closure of $C_{\mathcal {R}(T)}$ in the strong operator topology. Also, we extend the classical Weyl–von Neumann Theorem to $\mathcal {S}_C$, showing that every self-adjoint operator in $\mathcal {S}_C$ is the sum of a diagonal operator in $\mathcal {S}_C$ and a compact operator with arbitrarily small Schatten p-norm for $p\in (1,\infty )$.