{"title":"利用最佳键门布局增强基于 QCA 电路的安全性","authors":"M. Amutha, K. R. Kavitha","doi":"10.1007/s10207-024-00842-y","DOIUrl":null,"url":null,"abstract":"<p>Quantum-dot Cellular Automata (QCA) is an emerging nanotechnology that explores the potential of using quantum effects to build compact and energy-efficient computational devices. The hardware attacks on QCA primarily target understanding the physical structure and operation of these nanotechnological circuits. The circuits like cryptographic processors hold sensitive data that needs protection from third-party attacks. Logic locking is a hardware protection technique that adds additional gates to the original circuits to prevent circuits from these attacks. In this work, a new logic locking approach is proposed for QCA based circuits. The new configurable logic gate or key gate is introduced for logic locking. This gate can be configured to either wire or inverter based on key gate inputs. Further, the metaheuristic optimization based optimal key gate placement algorithm proposed to achieve higher security with minimum key gate placement. The proposed approach is verified in QCA benchmark circuits using QCA-Designer. Results shows that the proposed achieves maximum security with minimal gate replacements.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"171 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing security in QCA-based circuits using optimal key gate placement\",\"authors\":\"M. Amutha, K. R. Kavitha\",\"doi\":\"10.1007/s10207-024-00842-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum-dot Cellular Automata (QCA) is an emerging nanotechnology that explores the potential of using quantum effects to build compact and energy-efficient computational devices. The hardware attacks on QCA primarily target understanding the physical structure and operation of these nanotechnological circuits. The circuits like cryptographic processors hold sensitive data that needs protection from third-party attacks. Logic locking is a hardware protection technique that adds additional gates to the original circuits to prevent circuits from these attacks. In this work, a new logic locking approach is proposed for QCA based circuits. The new configurable logic gate or key gate is introduced for logic locking. This gate can be configured to either wire or inverter based on key gate inputs. Further, the metaheuristic optimization based optimal key gate placement algorithm proposed to achieve higher security with minimum key gate placement. The proposed approach is verified in QCA benchmark circuits using QCA-Designer. Results shows that the proposed achieves maximum security with minimal gate replacements.</p>\",\"PeriodicalId\":50316,\"journal\":{\"name\":\"International Journal of Information Security\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10207-024-00842-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00842-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Enhancing security in QCA-based circuits using optimal key gate placement
Quantum-dot Cellular Automata (QCA) is an emerging nanotechnology that explores the potential of using quantum effects to build compact and energy-efficient computational devices. The hardware attacks on QCA primarily target understanding the physical structure and operation of these nanotechnological circuits. The circuits like cryptographic processors hold sensitive data that needs protection from third-party attacks. Logic locking is a hardware protection technique that adds additional gates to the original circuits to prevent circuits from these attacks. In this work, a new logic locking approach is proposed for QCA based circuits. The new configurable logic gate or key gate is introduced for logic locking. This gate can be configured to either wire or inverter based on key gate inputs. Further, the metaheuristic optimization based optimal key gate placement algorithm proposed to achieve higher security with minimum key gate placement. The proposed approach is verified in QCA benchmark circuits using QCA-Designer. Results shows that the proposed achieves maximum security with minimal gate replacements.
期刊介绍:
The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation.
Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.