用 Coppersmith 方法求解模态三次方程

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Virgile Dossou-Yovo , Abderrahmane Nitaj , Alain Togbé
{"title":"用 Coppersmith 方法求解模态三次方程","authors":"Virgile Dossou-Yovo ,&nbsp;Abderrahmane Nitaj ,&nbsp;Alain Togbé","doi":"10.1016/j.ic.2024.105169","DOIUrl":null,"url":null,"abstract":"<div><p>Several cryptosystems based on Elliptic Curve Cryptography such as KMOV and Demytko process the message as a point <span><math><mi>M</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> of an elliptic curve with an equation of the form <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span> over a finite field when <em>n</em> is a prime number, or over a finite ring when <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mi>q</mi></math></span> is an RSA modulus. Other systems use singular cubic curves such as <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><mi>x</mi><mi>y</mi><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span>. In this paper, we present a method to find the small solutions of the former modular cubic equations. Our method is based on Coppersmith's technique and enables one to find the solutions <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> when <span><math><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>|</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> is smaller than the modulus.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105169"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving modular cubic equations with Coppersmith's method\",\"authors\":\"Virgile Dossou-Yovo ,&nbsp;Abderrahmane Nitaj ,&nbsp;Alain Togbé\",\"doi\":\"10.1016/j.ic.2024.105169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several cryptosystems based on Elliptic Curve Cryptography such as KMOV and Demytko process the message as a point <span><math><mi>M</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> of an elliptic curve with an equation of the form <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span> over a finite field when <em>n</em> is a prime number, or over a finite ring when <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mi>q</mi></math></span> is an RSA modulus. Other systems use singular cubic curves such as <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><mi>x</mi><mi>y</mi><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span>. In this paper, we present a method to find the small solutions of the former modular cubic equations. Our method is based on Coppersmith's technique and enables one to find the solutions <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> when <span><math><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>|</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> is smaller than the modulus.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"298 \",\"pages\":\"Article 105169\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000348\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000348","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

一些基于椭圆曲线密码学的密码系统,如 KMOV 和 Demytko,将信息处理为椭圆曲线上的一个点,当为质数时,其方程形式为有限域上的方程;当为 RSA 模数时,其方程形式为有限环上的方程。其他系统使用奇异立方曲线,如 和 。 在本文中,我们提出了一种寻找前者模立方方程小解的方法。我们的方法以 Coppersmith 的技术为基础,能够找到小于模的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving modular cubic equations with Coppersmith's method

Several cryptosystems based on Elliptic Curve Cryptography such as KMOV and Demytko process the message as a point M=(x0,y0) of an elliptic curve with an equation of the form y2x3+ax+b(modn) over a finite field when n is a prime number, or over a finite ring when n=pq is an RSA modulus. Other systems use singular cubic curves such as y2x3+ax2(modn) and y2+axyx3(modn). In this paper, we present a method to find the small solutions of the former modular cubic equations. Our method is based on Coppersmith's technique and enables one to find the solutions (x0,y0) when |x0|3|y0|2 is smaller than the modulus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信