涉及富集严格伪收缩和伪传播映射有限族的定点结果

IF 1.5 3区 数学 Q1 MATHEMATICS
Imo Kalu Agwu, Hüseyin Işık, Donatus Ikechi Igbokwe
{"title":"涉及富集严格伪收缩和伪传播映射有限族的定点结果","authors":"Imo Kalu Agwu, Hüseyin Işık, Donatus Ikechi Igbokwe","doi":"10.1186/s13660-024-03120-6","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a method for finding common fixed points of a finite family of $(\\eta _{i}, k_{i})$ -enriched strictly pseudocontractive (ESPC) maps and $(\\eta _{i}, \\beta _{i})$ -enriched strictly pseudononspreading (ESPN) maps in the setting of real Hilbert spaces. Further, we prove the strong convergence theorem of the proposed method under mild conditions on the control parameters. Our main results are also applied in proving strong convergence theorems for $\\eta _{i}$ -enriched nonexpansive, strongly inverse monotone, and strictly pseudononspreading maps. Some nontrivial examples are given, and the results obtained extend, improve, and generalize several well-known results in the current literature.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"56 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed point results involving a finite family of enriched strictly pseudocontractive and pseudononspreading mappings\",\"authors\":\"Imo Kalu Agwu, Hüseyin Işık, Donatus Ikechi Igbokwe\",\"doi\":\"10.1186/s13660-024-03120-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a method for finding common fixed points of a finite family of $(\\\\eta _{i}, k_{i})$ -enriched strictly pseudocontractive (ESPC) maps and $(\\\\eta _{i}, \\\\beta _{i})$ -enriched strictly pseudononspreading (ESPN) maps in the setting of real Hilbert spaces. Further, we prove the strong convergence theorem of the proposed method under mild conditions on the control parameters. Our main results are also applied in proving strong convergence theorems for $\\\\eta _{i}$ -enriched nonexpansive, strongly inverse monotone, and strictly pseudononspreading maps. Some nontrivial examples are given, and the results obtained extend, improve, and generalize several well-known results in the current literature.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03120-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03120-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍了一种在实希尔伯特空间中寻找$(\eta _{i}, k_{i})$富集严格伪收缩(ESPC)映射和$(\eta _{i}, \beta _{i})$富集严格伪展开(ESPN)映射有限族的公共定点的方法。此外,我们还证明了所提方法在控制参数的温和条件下的强收敛定理。我们的主要结果还被应用于证明$\eta _{i}$富集非展开、强逆单调和严格伪展开映射的强收敛定理。我们给出了一些非难例,所得到的结果扩展、改进和概括了当前文献中的几个著名结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed point results involving a finite family of enriched strictly pseudocontractive and pseudononspreading mappings
In this study, we introduce a method for finding common fixed points of a finite family of $(\eta _{i}, k_{i})$ -enriched strictly pseudocontractive (ESPC) maps and $(\eta _{i}, \beta _{i})$ -enriched strictly pseudononspreading (ESPN) maps in the setting of real Hilbert spaces. Further, we prove the strong convergence theorem of the proposed method under mild conditions on the control parameters. Our main results are also applied in proving strong convergence theorems for $\eta _{i}$ -enriched nonexpansive, strongly inverse monotone, and strictly pseudononspreading maps. Some nontrivial examples are given, and the results obtained extend, improve, and generalize several well-known results in the current literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信