{"title":"具有亚模态罚则的树上优先收集多路问题的近似算法","authors":"Xiaofei Liu, Weidong Li","doi":"10.1017/s0960129524000124","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline3.png\" /> <jats:tex-math> $T=(V,E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a tree in which each edge is assigned a cost; let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline4.png\" /> <jats:tex-math> $\\mathcal{P}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a set of source–sink pairs of vertices in <jats:italic>V</jats:italic> in which each source–sink pair produces a profit. Given a lower bound <jats:italic>K</jats:italic> for the profit, the <jats:italic>K</jats:italic>-prize-collecting multicut problem in trees with submodular penalties is to determine a partial multicut <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline5.png\" /> <jats:tex-math> $M\\subseteq E$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the total profit of the disconnected pairs after removing <jats:italic>M</jats:italic> from <jats:italic>T</jats:italic> is at least <jats:italic>K</jats:italic>, and the total cost of edges in <jats:italic>M</jats:italic> plus the penalty of the set of still-connected pairs is minimized, where the penalty is determined by a nondecreasing submodular function. Based on the primal-dual scheme, we present a combinatorial polynomial-time algorithm by carefully increasing the penalty. In the theoretical analysis, we prove that the approximation factor of the proposed algorithm is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline6.png\" /> <jats:tex-math> $(\\frac{8}{3}+\\frac{4}{3}\\kappa+\\varepsilon)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline7.png\" /> <jats:tex-math> $\\kappa$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the total curvature of the submodular function and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline8.png\" /> <jats:tex-math> $\\varepsilon$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is any fixed positive number. Experiments reveal that the objective value of the solutions generated by the proposed algorithm is less than 130% compared with that of the optimal value in most cases.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"3 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approximation algorithm for the -prize-collecting multicut problem in trees with submodular penalties\",\"authors\":\"Xiaofei Liu, Weidong Li\",\"doi\":\"10.1017/s0960129524000124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline3.png\\\" /> <jats:tex-math> $T=(V,E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a tree in which each edge is assigned a cost; let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline4.png\\\" /> <jats:tex-math> $\\\\mathcal{P}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a set of source–sink pairs of vertices in <jats:italic>V</jats:italic> in which each source–sink pair produces a profit. Given a lower bound <jats:italic>K</jats:italic> for the profit, the <jats:italic>K</jats:italic>-prize-collecting multicut problem in trees with submodular penalties is to determine a partial multicut <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline5.png\\\" /> <jats:tex-math> $M\\\\subseteq E$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the total profit of the disconnected pairs after removing <jats:italic>M</jats:italic> from <jats:italic>T</jats:italic> is at least <jats:italic>K</jats:italic>, and the total cost of edges in <jats:italic>M</jats:italic> plus the penalty of the set of still-connected pairs is minimized, where the penalty is determined by a nondecreasing submodular function. Based on the primal-dual scheme, we present a combinatorial polynomial-time algorithm by carefully increasing the penalty. In the theoretical analysis, we prove that the approximation factor of the proposed algorithm is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline6.png\\\" /> <jats:tex-math> $(\\\\frac{8}{3}+\\\\frac{4}{3}\\\\kappa+\\\\varepsilon)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline7.png\\\" /> <jats:tex-math> $\\\\kappa$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the total curvature of the submodular function and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline8.png\\\" /> <jats:tex-math> $\\\\varepsilon$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is any fixed positive number. Experiments reveal that the objective value of the solutions generated by the proposed algorithm is less than 130% compared with that of the optimal value in most cases.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000124\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000124","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
让 $T=(V,E)$ 是一棵树,树中的每条边都有一个成本;让 $mathcal{P}$ 是 V 中顶点的源-汇对集合,其中每个源-汇对都产生一个利润。给定利润的下限 K,具有亚模态惩罚的树中的 K-利润收集多切问题就是确定一个部分多切 $M\subseteq E$,使得从 T 中删除 M 后断开的对的总利润至少为 K,并且 M 中的边的总成本加上仍然连接的对的惩罚最小,其中惩罚由一个非递减的亚模态函数决定。基于初等二元方案,我们提出了一种通过谨慎增加惩罚的组合多项式时间算法。在理论分析中,我们证明了所提算法的近似系数为 $(\frac{8}{3}+\frac{4}{3}\kappa+\varepsilon)$ ,其中 $\kappa$ 是子模函数的总曲率,$\varepsilon$ 是任意固定的正数。实验表明,在大多数情况下,拟议算法生成的解的目标值小于最优值的 130%。
An approximation algorithm for the -prize-collecting multicut problem in trees with submodular penalties
Let $T=(V,E)$ be a tree in which each edge is assigned a cost; let $\mathcal{P}$ be a set of source–sink pairs of vertices in V in which each source–sink pair produces a profit. Given a lower bound K for the profit, the K-prize-collecting multicut problem in trees with submodular penalties is to determine a partial multicut $M\subseteq E$ such that the total profit of the disconnected pairs after removing M from T is at least K, and the total cost of edges in M plus the penalty of the set of still-connected pairs is minimized, where the penalty is determined by a nondecreasing submodular function. Based on the primal-dual scheme, we present a combinatorial polynomial-time algorithm by carefully increasing the penalty. In the theoretical analysis, we prove that the approximation factor of the proposed algorithm is $(\frac{8}{3}+\frac{4}{3}\kappa+\varepsilon)$ , where $\kappa$ is the total curvature of the submodular function and $\varepsilon$ is any fixed positive number. Experiments reveal that the objective value of the solutions generated by the proposed algorithm is less than 130% compared with that of the optimal value in most cases.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.