具有亚模态罚则的树上优先收集多路问题的近似算法

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Xiaofei Liu, Weidong Li
{"title":"具有亚模态罚则的树上优先收集多路问题的近似算法","authors":"Xiaofei Liu, Weidong Li","doi":"10.1017/s0960129524000124","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline3.png\" /> <jats:tex-math> $T=(V,E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a tree in which each edge is assigned a cost; let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline4.png\" /> <jats:tex-math> $\\mathcal{P}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a set of source–sink pairs of vertices in <jats:italic>V</jats:italic> in which each source–sink pair produces a profit. Given a lower bound <jats:italic>K</jats:italic> for the profit, the <jats:italic>K</jats:italic>-prize-collecting multicut problem in trees with submodular penalties is to determine a partial multicut <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline5.png\" /> <jats:tex-math> $M\\subseteq E$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the total profit of the disconnected pairs after removing <jats:italic>M</jats:italic> from <jats:italic>T</jats:italic> is at least <jats:italic>K</jats:italic>, and the total cost of edges in <jats:italic>M</jats:italic> plus the penalty of the set of still-connected pairs is minimized, where the penalty is determined by a nondecreasing submodular function. Based on the primal-dual scheme, we present a combinatorial polynomial-time algorithm by carefully increasing the penalty. In the theoretical analysis, we prove that the approximation factor of the proposed algorithm is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline6.png\" /> <jats:tex-math> $(\\frac{8}{3}+\\frac{4}{3}\\kappa+\\varepsilon)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline7.png\" /> <jats:tex-math> $\\kappa$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the total curvature of the submodular function and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000124_inline8.png\" /> <jats:tex-math> $\\varepsilon$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is any fixed positive number. Experiments reveal that the objective value of the solutions generated by the proposed algorithm is less than 130% compared with that of the optimal value in most cases.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"3 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approximation algorithm for the -prize-collecting multicut problem in trees with submodular penalties\",\"authors\":\"Xiaofei Liu, Weidong Li\",\"doi\":\"10.1017/s0960129524000124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline3.png\\\" /> <jats:tex-math> $T=(V,E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a tree in which each edge is assigned a cost; let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline4.png\\\" /> <jats:tex-math> $\\\\mathcal{P}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a set of source–sink pairs of vertices in <jats:italic>V</jats:italic> in which each source–sink pair produces a profit. Given a lower bound <jats:italic>K</jats:italic> for the profit, the <jats:italic>K</jats:italic>-prize-collecting multicut problem in trees with submodular penalties is to determine a partial multicut <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline5.png\\\" /> <jats:tex-math> $M\\\\subseteq E$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the total profit of the disconnected pairs after removing <jats:italic>M</jats:italic> from <jats:italic>T</jats:italic> is at least <jats:italic>K</jats:italic>, and the total cost of edges in <jats:italic>M</jats:italic> plus the penalty of the set of still-connected pairs is minimized, where the penalty is determined by a nondecreasing submodular function. Based on the primal-dual scheme, we present a combinatorial polynomial-time algorithm by carefully increasing the penalty. In the theoretical analysis, we prove that the approximation factor of the proposed algorithm is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline6.png\\\" /> <jats:tex-math> $(\\\\frac{8}{3}+\\\\frac{4}{3}\\\\kappa+\\\\varepsilon)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline7.png\\\" /> <jats:tex-math> $\\\\kappa$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the total curvature of the submodular function and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000124_inline8.png\\\" /> <jats:tex-math> $\\\\varepsilon$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is any fixed positive number. Experiments reveal that the objective value of the solutions generated by the proposed algorithm is less than 130% compared with that of the optimal value in most cases.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000124\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000124","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

让 $T=(V,E)$ 是一棵树,树中的每条边都有一个成本;让 $mathcal{P}$ 是 V 中顶点的源-汇对集合,其中每个源-汇对都产生一个利润。给定利润的下限 K,具有亚模态惩罚的树中的 K-利润收集多切问题就是确定一个部分多切 $M\subseteq E$,使得从 T 中删除 M 后断开的对的总利润至少为 K,并且 M 中的边的总成本加上仍然连接的对的惩罚最小,其中惩罚由一个非递减的亚模态函数决定。基于初等二元方案,我们提出了一种通过谨慎增加惩罚的组合多项式时间算法。在理论分析中,我们证明了所提算法的近似系数为 $(\frac{8}{3}+\frac{4}{3}\kappa+\varepsilon)$ ,其中 $\kappa$ 是子模函数的总曲率,$\varepsilon$ 是任意固定的正数。实验表明,在大多数情况下,拟议算法生成的解的目标值小于最优值的 130%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximation algorithm for the -prize-collecting multicut problem in trees with submodular penalties
Let $T=(V,E)$ be a tree in which each edge is assigned a cost; let $\mathcal{P}$ be a set of source–sink pairs of vertices in V in which each source–sink pair produces a profit. Given a lower bound K for the profit, the K-prize-collecting multicut problem in trees with submodular penalties is to determine a partial multicut $M\subseteq E$ such that the total profit of the disconnected pairs after removing M from T is at least K, and the total cost of edges in M plus the penalty of the set of still-connected pairs is minimized, where the penalty is determined by a nondecreasing submodular function. Based on the primal-dual scheme, we present a combinatorial polynomial-time algorithm by carefully increasing the penalty. In the theoretical analysis, we prove that the approximation factor of the proposed algorithm is $(\frac{8}{3}+\frac{4}{3}\kappa+\varepsilon)$ , where $\kappa$ is the total curvature of the submodular function and $\varepsilon$ is any fixed positive number. Experiments reveal that the objective value of the solutions generated by the proposed algorithm is less than 130% compared with that of the optimal value in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信