广义正弦-戈登方程:还原与积分离散化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Han-Han Sheng, Bao-Feng Feng, Guo-Fu Yu
{"title":"广义正弦-戈登方程:还原与积分离散化","authors":"Han-Han Sheng, Bao-Feng Feng, Guo-Fu Yu","doi":"10.1007/s00332-024-10030-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose fully discrete analogues of a generalized sine-Gordon (gsG) equation <span>\\(u_{t x}=\\left( 1+\\nu \\partial _x^2\\right) \\sin u\\)</span>. The key points of the construction are based on the bilinear discrete KP hierarchy and appropriate definition of discrete reciprocal transformations. We derive semi-discrete analogues of the gsG equation from the fully discrete gsG equation by taking the temporal parameter limit <span>\\(b\\rightarrow 0\\)</span>. In particular, one fully discrete gsG equation is reduced to a semi-discrete gsG equation in the case of <span>\\(\\nu =-1\\)</span> (Feng et al. in Numer Algorithms 94:351–370, 2023). Furthermore, <i>N</i>-soliton solutions to the semi- and fully discrete analogues of the gsG equation in the determinant form are presented. Dynamics of one- and two-soliton solutions for the discrete gsG equations are analyzed. By introducing a parameter <i>c</i>, we demonstrate that the gsG equation can reduce to the sine-Gordon equation and the short pulse at the levels of continuous, semi-discrete and fully discrete cases. The limiting forms of the <i>N</i>-soliton solutions to the gsG equation in each level also correspond to those of the sine-Gordon equation and the short pulse equation.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalized Sine-Gordon Equation: Reductions and Integrable Discretizations\",\"authors\":\"Han-Han Sheng, Bao-Feng Feng, Guo-Fu Yu\",\"doi\":\"10.1007/s00332-024-10030-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose fully discrete analogues of a generalized sine-Gordon (gsG) equation <span>\\\\(u_{t x}=\\\\left( 1+\\\\nu \\\\partial _x^2\\\\right) \\\\sin u\\\\)</span>. The key points of the construction are based on the bilinear discrete KP hierarchy and appropriate definition of discrete reciprocal transformations. We derive semi-discrete analogues of the gsG equation from the fully discrete gsG equation by taking the temporal parameter limit <span>\\\\(b\\\\rightarrow 0\\\\)</span>. In particular, one fully discrete gsG equation is reduced to a semi-discrete gsG equation in the case of <span>\\\\(\\\\nu =-1\\\\)</span> (Feng et al. in Numer Algorithms 94:351–370, 2023). Furthermore, <i>N</i>-soliton solutions to the semi- and fully discrete analogues of the gsG equation in the determinant form are presented. Dynamics of one- and two-soliton solutions for the discrete gsG equations are analyzed. By introducing a parameter <i>c</i>, we demonstrate that the gsG equation can reduce to the sine-Gordon equation and the short pulse at the levels of continuous, semi-discrete and fully discrete cases. The limiting forms of the <i>N</i>-soliton solutions to the gsG equation in each level also correspond to those of the sine-Gordon equation and the short pulse equation.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10030-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10030-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了广义正弦-戈登(gsG)方程(u_{t x}=left( 1+\nu \partial _x^2\right) \sin u\ )的完全离散类比。构造的要点基于双线性离散 KP 层次和离散倒易变换的适当定义。我们通过时间参数极限 \(b\arrow 0\) 从完全离散的 gsG 方程推导出 gsG 方程的半离散类似物。特别是,在 \(\nu =-1\) 的情况下,一个完全离散的gsG方程被简化为一个半离散的gsG方程(Feng等人,发表于《数值算法》94:351-370,2023年)。此外,还提出了行列式的半离散和全离散类似 gsG 方程的 N-孑子解。我们还分析了离散 gsG 方程的单oliton 和双oliton 解的动力学。通过引入参数 c,我们证明了 gsG 方程可以在连续、半离散和完全离散的情况下还原为正弦-戈登方程和短脉冲。gsG 方程在各层次上的 N 索利子解的极限形式也对应于正弦-戈登方程和短脉冲方程的极限形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Generalized Sine-Gordon Equation: Reductions and Integrable Discretizations

A Generalized Sine-Gordon Equation: Reductions and Integrable Discretizations

In this paper, we propose fully discrete analogues of a generalized sine-Gordon (gsG) equation \(u_{t x}=\left( 1+\nu \partial _x^2\right) \sin u\). The key points of the construction are based on the bilinear discrete KP hierarchy and appropriate definition of discrete reciprocal transformations. We derive semi-discrete analogues of the gsG equation from the fully discrete gsG equation by taking the temporal parameter limit \(b\rightarrow 0\). In particular, one fully discrete gsG equation is reduced to a semi-discrete gsG equation in the case of \(\nu =-1\) (Feng et al. in Numer Algorithms 94:351–370, 2023). Furthermore, N-soliton solutions to the semi- and fully discrete analogues of the gsG equation in the determinant form are presented. Dynamics of one- and two-soliton solutions for the discrete gsG equations are analyzed. By introducing a parameter c, we demonstrate that the gsG equation can reduce to the sine-Gordon equation and the short pulse at the levels of continuous, semi-discrete and fully discrete cases. The limiting forms of the N-soliton solutions to the gsG equation in each level also correspond to those of the sine-Gordon equation and the short pulse equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信