平面谐波映射新积的半径问题

IF 0.6 4区 数学 Q3 MATHEMATICS
Ankur Raj, Sumit Nagpal
{"title":"平面谐波映射新积的半径问题","authors":"Ankur Raj, Sumit Nagpal","doi":"10.1007/s40315-024-00538-3","DOIUrl":null,"url":null,"abstract":"<p>Due to the limitations of the harmonic convolution defined by Clunie and Sheil Small (Ann Acad Sci Fenn Ser A I Math 9:3–25, 1984), a new product <span>\\(\\otimes \\)</span> has been recently introduced (2021) for two harmonic functions defined in an open unit disk of the complex plane. In this paper, the radius of univalence (and other radii constants) for the products <span>\\(K\\otimes K\\)</span> and <span>\\(L\\otimes f\\)</span> are computed, where <i>K</i> denotes the harmonic Koebe function, <i>L</i> denotes the harmonic right half-plane mapping and <i>f</i> is a sense-preserving harmonic function defined in the unit disk with certain constraints. In addition, several conditions on harmonic function <i>f</i> are investigated under which the product <span>\\(L\\otimes f\\)</span> is sense-preserving and univalent in the unit disk.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radius Problems for the New Product of Planar Harmonic Mappings\",\"authors\":\"Ankur Raj, Sumit Nagpal\",\"doi\":\"10.1007/s40315-024-00538-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the limitations of the harmonic convolution defined by Clunie and Sheil Small (Ann Acad Sci Fenn Ser A I Math 9:3–25, 1984), a new product <span>\\\\(\\\\otimes \\\\)</span> has been recently introduced (2021) for two harmonic functions defined in an open unit disk of the complex plane. In this paper, the radius of univalence (and other radii constants) for the products <span>\\\\(K\\\\otimes K\\\\)</span> and <span>\\\\(L\\\\otimes f\\\\)</span> are computed, where <i>K</i> denotes the harmonic Koebe function, <i>L</i> denotes the harmonic right half-plane mapping and <i>f</i> is a sense-preserving harmonic function defined in the unit disk with certain constraints. In addition, several conditions on harmonic function <i>f</i> are investigated under which the product <span>\\\\(L\\\\otimes f\\\\)</span> is sense-preserving and univalent in the unit disk.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00538-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00538-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

由于克鲁尼和谢尔-斯莫尔(Ann Acad Sci Fenn Ser A I Math 9:3-25,1984)定义的谐波卷积的局限性,最近(2021年)引入了一种新的积(\otimes \),用于复平面开放单位盘中定义的两个谐函数。本文计算了积\(K\otimes K\) 和积\(L\otimes f\) 的不等价半径(和其他半径常数),其中 K 表示谐波柯贝函数,L 表示谐波右半平面映射,f 是定义在单位盘中的保感谐波函数,并有一定的约束条件。此外,还研究了谐函数 f 的几个条件,在这些条件下,乘积 \(L\otimes f\) 在单位盘中是保感和一等的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radius Problems for the New Product of Planar Harmonic Mappings

Radius Problems for the New Product of Planar Harmonic Mappings

Due to the limitations of the harmonic convolution defined by Clunie and Sheil Small (Ann Acad Sci Fenn Ser A I Math 9:3–25, 1984), a new product \(\otimes \) has been recently introduced (2021) for two harmonic functions defined in an open unit disk of the complex plane. In this paper, the radius of univalence (and other radii constants) for the products \(K\otimes K\) and \(L\otimes f\) are computed, where K denotes the harmonic Koebe function, L denotes the harmonic right half-plane mapping and f is a sense-preserving harmonic function defined in the unit disk with certain constraints. In addition, several conditions on harmonic function f are investigated under which the product \(L\otimes f\) is sense-preserving and univalent in the unit disk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信